Reading Quiz

1. The type of function that describes simple harmonic motion is

linear
exponential
quadratic
sinusoidal
inverse

moowx
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Answer: D

These reading quiz questions are a nice way to get the students minds into the
game at the start of class. They are fairly straight forward.




Answer

1. The type of function that describes simple harmonic motion is

A. linear

B. exponential
C. quadratic
D. sinusoidal
E. inverse
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Answer: D




Reading Quiz

2. Amass is bobbing up and down on a spring. If you increase
the amplitude of the motion, how does this affect the time for
one oscillation?

A. The time increases.
B. The time decreases.
C. The time does not change.
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Answer: C




Answer

2. Amass is bobbing up and down on a spring. If you increase
the amplitude of the motion, how does this affect the time for
one oscillation?

A. The time increases.
B. The time decreases.
C. The time does not change.

© 2010 Pearson Education. Inc.

Answer: C




Reading Quiz

3. If you drive an oscillator, it will have the largest amplitude if you
drive it at its frequency.

special
positive
natural
damped
pendulum

moow»
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Answer: C




Answer

drive it at its

special
positive
natural
damped
pendulum

moow»

© 2010 Pearson Education. Inc.

3. If you drive an oscillator, it will have the largest amplitude if you

frequency.

Answer: C




Equilibrium and Oscillation

When the ball is displaced When the ball is moved from equilibrium
and released, a restoring force pulls

from equilibrium . . . é torin,
it back toward equilibrium . . .

Equilibrium ; ...butinertia __.™ ... where the restoring
position causes the ball” force is directed back
... a free-body The farther away to continue toward equilibrium. The
diagram shows from equilibrium, moving to the ball reverses direction
i . e other side . . . and continues oscillating.
a net restoring the greater the net £
force. force.

Successive beats of the heart produce

approximately the same signal

Period T

Voltage across chest
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I used this to start a discussion about if an EKG is Simple Harmonic Motion
(SHM). First I asked if it could be and let the students discuss with their
neighbor. Then we had a whole class discussion. It is not because there’s not
a linear restoring force that causes the heart to beat. You can see this because
it’s not a sinusoidal function. The ball in a bowl is however, a nice example.



Linear Restoring Forces and Simple Harmonic
Motion

= Simple harmonic motion (SHM) is the motion of an
object subject to a force that is proportional to the
object's displacement. One example of SHM is the
motion of a mass attached to a spring. In this case,
the relationship between the spring force and the
displacement is given by Hooke's Law, F = -kx, where
k is the spring constant, x is the displacement from
the equilibrium length of the spring, and the minus
sign indicates that the force opposes the
displacement.




Linear Restoring Forces and Simple Harmonic

Motion

At equilibrium

there is no net
force. "y
Air track

A displacement causes the
spring to exert a force toward
the equilibrium position. -,

The restoring force
is proportional to
the displacement.
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The point on the

I : t

»{ > object that is

: ' .-measured
Air track
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I This is the

1 ogev® equilibri iti

150® equilibrium position,

‘. where the object

I

I

[
I
S, . : would sit at rest. x is
1 the displacement

K
Turning from this position.

int!
point,

i*The graph of the
motion is sinusoidal.

The motion is symmetric
about the equilibrium position
Maximum distance to the left
and to the right is A.




Frequency and Period

The frequency of oscillation depends on physical properties of the
oscillator; it does not depend on the amplitude of the oscillation.

= - P p
r / and 1’=2¢.»VFE

- 20\ m ik
m
Frequency and period of SHM

for mass m on a spring with spring constant

1 [g [L
e = =t
= | aind =27
Y 27N L ’ v g
Frequency of a pendulum of length L with free-fall acceleration g L
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Sinusoidal Relationships
% Sinusoidal relationships ‘w

A quantity that oscillates in time and Y e -m( ;n;)
can be written 1 z

2w
¢ = Asin| ——
X \In( T )

2t —A41 f
x=Acos 3 The f

: repeats affer
£ x=Acs(20) atime 7

or

is called a sinusoidal function with
period 7. The argument of the
functions, 27 ¢/T, is in radians.

0

The graphs of both functions have the
same shape, but they have different 1
initial values at r = 0 s. =i

umiTs If x is a sinusoidal function, then x is:

B Bounded—it can take only values between A and —A.
B Periodic—it repeats the same sequence of values over and over again.
Whatever value x has at time 4, it has the same value at 1 + T

sPeCIAL vaLUES The function x has special values at certain times:

=0 J’—'LT r—]:'n" l—",?‘ 1=T
x = Asin(2mt/T) 0 A 0 =) 0
x =Acos(2miT) A 0 —A (1] A

Exercise 6
© 2010 Pearson Education. Inc.

This page demonstrates how the position equation can be sin or cos. It simply
depends on the initial amplitude which means it just depends on when you
start time.



Each dimension of circular motion is a sinusoidal
funtion.

= Animation of sine and cosine
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Mathematical Description of Simple Harmonic
Motion

x(t) = Acos(2ft) $§32323%3
o -+ 845352380
v () = —2mf)Asin(2mft) i 7: B {;}é 6 6

a,(t) = —(2mf y’Acos(2mft)

Position, velocity, and acceleration for an object in

T T
simple harmonic motion with frequency fand amplitude A N \_/

i

© 2010 Pearson Education. Inc.

Students have a surprisingly hard time with many aspects of the math of
Acos(2pift) The next series of questions helps with some of it. I also used the
workbooks from Knight, Jones and Fields in recitation and the work for this
chapter really helped students sort out how the math works here.



x(t) = Acos(2mft)
v(1) = —(2mf )Asin(27ft)
a (1) = —(2mf A cos2mfi)

Position, velocity, and acceleration for an object in

simple harmonic motion with frequency fand amplitude A

What is the largest value cos(2nfi) can ever have?
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x(1) = Acos(2mft)
v(t) = —(2mf)Asin(27ft)
a (1) = —(2mf A cos2mfi)

Position, velocity, and acceleration for an object in

simple harmonic motion with frequency fand amplitude A

What is the largest value cos(2nfi) can ever have?

A. 0
B. 1
C. 2nft
D. «
E. %
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x(t) = Acos(2mft)
v(1) = —(2mf )Asin(27ft)
a (1) = —(2mf A cos2mfi)

Position, velocity, and acceleration for an object in

simple harmonic motion with frequency fand amplitude A

What is the largest value sin(2nff) can ever have?
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x(1) = Acos(2mft)
v(t) = —(2mf)Asin(27ft)
a (1) = —(2mf A cos2mfi)

Position, velocity, and acceleration for an object in

simple harmonic motion with frequency fand amplitude A

What is the largest value sin(2nff) can ever have?

A. 0
B. 1
C. 2nft
D. «
E. %
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Maximum displacement, velocity and acceleration

x(1) = Acos(2ft)
v (t) = —(2mf)A sin(27ft)
a (1) = —(2zf y’Acos(2mft)

What is the largest displacement possible?

A. 0
B. A
C. 2nft
D. «
E. 2A
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Maximum displacement, velocity and acceleration

x(1) = Acos(2ft)
v (t) = —(2mf)A sin(27ft)
a(t) = —Q2mf ) Acos(2mft)

What is the largest displacement possible?

A. 0
B. A
C. 2nft
D. «
E. 2A
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Maximum displacement, velocity and acceleration

x(1) = Acos(2ft)
v (t) = —(2mf)A sin(27ft)
a (1) = —(2zf y’Acos(2mft)

What is the largest velocity possible?

A. 0

B. 2nf

C. 2Anf
D. Anf
E. =
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Maximum displacement, velocity and acceleration

x(1) = Acos(2ft)
v (t) = —(2mf)A sin(27ft)
a(t) = —Q2mf ) Acos(2mft)

What is the largest velocity possible?

A 0

B. 2nf

C. 2Anf
D. Anf

E. =
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Maximum displacement, velocity and acceleration

x(1) = Acos(2mft)
v (t) = —(2mf)A sin(27ft)
a (1) = —(2zf y’Acos(2mft)

What is the largest acceleration possible?

A. 0

B. 2A(m/)?
C. 4m’Af
D. «

E. 2Anf
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Maximum displacement, velocity and acceleration

x(1) = Acos(2ft)
v (t) = —(2mf)A sin(27ft)
a (1) = —(2zf y’Acos(2mft)

What is the largest acceleration possible?

A. 0

B. 2A(n)
C. 4n’Af
D. «

E. 2Anf
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Energy in Simple Harmonic Motion

As a mass on a spring goes through its cycle of oscillation, energy
is transformed from potential to kinetic and back to potential.

Energy is purely Energy is ! ! : 1 !
“ﬂ!\'H[Hl‘. e, .--purely Kinetic : I ] ; :
b N " e : ; Enérgy 1 i
: : : S S R
; k : H‘i : : E=Kk+U :
(\AVAVAVAVAVAVAVAVA Vo ViV | — —
T T T x : I \ ‘:‘“ Potential
I 1 1 Vi ] : : : ‘r energy U
fe\:‘-‘\i-"\b'ﬁ\é'\):\"‘\‘?\'f\ih;ﬁ J T:‘:::: ng : ; : L, Kinetic
P ! ! i ! energy K
i 1 1 ] I ; ! ! : x
Lo M= A 0 A
MWWWWIMWALT ‘
[} ] 1 ! I
1 ‘ 1 I 1
(L R R
1 1 1 | |
[ 1 1 I |
Wm0
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Energy

If there is no friction or dissipation, kinetic and
potential energies are alternately transformed into
each other in SHM, with the sum of the two

conserved.
1 1 o
E = Emvxz o Ekxz { A” kmetlc
= oy
2 max
— lkAz _14 (')
2 }

© 2010 Pearson Education. Inc.

All potential
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Solving Problems

;3?1'5,": Identifying and analyzing simple harmonic motion (MP)TM

© If the net force acting on a particle is a linear restoring force, the motion is
simple harmonic motion around the equilibrium position.

@ The position, velocity, and acceleration as a function of time are given in
Equations 14.18. The equations are given here in terms of x, but they can be
written in terms of y, @, or some other variable if the situation calls for it.

©® The amplitude A is the maximum value of the displacement from equilib-
rium. The maximum speed and the maximum magnitude of the acceleration
are v, = 27fA and g, = 27f)*A.

O The frequency f (and hence the period T = 1/f) depends on the physical
properties of the particular oscillator, but f does nor depend on A.

For a mass on a spring, the frequency is given by f= o E

© The sum of potential energy plus kinetic energy is constan’t??As the oscilla-

tion proceeds, energy is transformed from kinetic into potential energy and

then back again. x(r) = Acos(2ft)
v(t) = —Q2mf )Asin(2mfr)
€ 2010 Pearson Education. Inc. a,\'(t) = _(217f)2ACOS(277ﬂ)
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Equations

1 |k m
f—; o and T—Q‘JT\/%

Frequency and period of SHM
for mass m on a spring with spring constant k
1 /g

.f=§ I

and T= 277\[5
g

Frequency of a pendulum of length L with free-fall acceleration g

x(t) = Acos(27ft)
v (f) = —27f)Asin(27f?)
a(t) = —Q2af)*Acos2mft)

v =2mfAand a,, = (27f)A.

© 2010 Pearson Education. Inc.
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Additional Example Problem

Walter has a summer job babysitting an 18 kg youngster. He takes
his young charge to the playground, where the boy immediately
runs to the swings. The seat of the swing the boy chooses hangs
down 2.5 m below the top bar. “Push me,” the boy shouts, and
Walter obliges. He gives the boy one small shove for each period of
the swing, in order keep him going. Walter earns $6 per hour. While
pushing, he has time for his mind to wander, so he decides to
compute how much he is paid per push. How much does Walter
earn for each push of the swing?

I let the class try this problem out while the equations were showing. Then
after they had worked for a reasonable amount of time I got ideas from them
how to solve the problem and then did it on the board.

28



Additional Example Problem

Walter has a summer job babysitting an 18 kg youngster. He takes
his young charge to the playground, where the boy immediately
runs to the swings. The seat of the swing the boy chooses hangs
down 2.5 m below the top bar. “Push me,” the boy shouts, and
Walter obliges. He gives the boy one small shove for each period of
the swing, in order keep him going. Walter earns $6 per hour. While
pushing, he has time for his mind to wander, so he decides to
compute how much he is paid per push. How much does Walter
earn for each push of the swing?

T=2n\(l/e) =317 s
3600 s/hr (1 push/3.17s) = 1136 pushes/ hr
$6/hr (1hr/1136 pushes) = $0.0053 / push

Or half a penny per push!

29
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Checking Understanding

A series of pendulums with different length strings and different
masses is shown below. Each pendulum is pulled to the side by
the same (small) angle, the pendulums are released, and they
begin to swing from side to side.

A B C D E

@
e £

.
«/ : U

=

,
-

6 L\
2y

Rank the frequencies of the five pendulums, from highest to

lowest.
A. A=E>B=D>C
B. D>~A=C>B=E
C. A=B=C=D=E
D. B E>C=>A=D
Answer: A
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Answer

A series of pendulums with different length strings and different
masses is shown below. Each pendulum is pulled to the side by
the same (small) angle, the pendulums are released, and they
begin to swing from side to side.

&

Rank the frequencies of the five pendulums, from highest to

lowest.
A. A=E>B=D>C =127 (/)
B. D>A=C>B=E Frequency is proportional to
C. A=B=C=D=E the inverse of the length.
D. B>E>C>A>D So longer has a lower
frequency
Answer: A
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Example Problem

We think of butterflies and moths as gently fluttering their wings,
but this is not always the case. Tomato hornworms turn into
remarkable moths called hawkmoths whose flight resembles that
of a hummingbird. To a good approximation, the wings move with
simple harmonic motion with a very high frequency—about 26 Hz,
a high enough frequency to generate an audible tone. The tips of
the wings move up and down by about 5.0 cm from their central
position during one cycle. Given these numbers,

A. What is the maximum velocity of the tip of a hawkmoth
wing?

B. Whatis the maximum acceleration of the tip of a
hawkmoth wing?

Again, let the class work on this in small groups and then did on the board.
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Example Problem

We think of butterflies and moths as gently fluttering their wings,
but this is not always the case. Tomato hornworms turn into
remarkable moths called hawkmoths whose flight resembles that
of a hummingbird. To a good approximation, the wings move with
simple harmonic motion with a very high frequency—about 26 Hz,
a high enough frequency to generate an audible tone. The tips of
the wings move up and down by about 5.0 cm from their central

position

A

v

MelX

a

Mmax

during one cycle. Given these numbers,

What is the maximum velocity of the tip of a hawkmoth
wing?

What is the maximum acceleration of the tip of a
hawkmoth wing?

= 2774 = 2 1 26Hz 0.05m = 8.17 m/s
= A (27)°= (2 7 26Hz) 2 0.05m = 1334 m/s?
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Lowest point Highest point
of motion of motion

At which of the above times is the displacement zero?

At which of the above times is the velocity zero?

At which of the above times is the acceleration zero?

At which of the above times is the kinetic energy a maximum?

At which of the above times is the potential energy a maximum?
At which of the above times is kinetic energy being transformed to
potential energy?

At which of the above times is potential energy being transformed
to kinetic energy?

SOk wN =

~

Students have a hard time with several of these. The next series of slides
breaks each into its own question. It took a good 15 minutes or more of
class time to work through the ideas in their groups and as a whole class
but it seemed to work well.

Answer:

1) AE, I
2)C,G
3)AE, I
HAE 1
5C,G
6)B, F
7)D,H
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

C D E

1 1€ 1L

5@ 6 _______

Lowest point Highest point
of motion of motion

Ommu{ o

Ommn »
Qmmu

Omnm -

I

OHNHH <
QHHHH =

At which of the above times is the displacement zero?

A. C G
N

1

OCoOw
_UUJ)>
T Tm
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

C
1L 1L

B
—_
=
—_—
—
=
=
P

Q

C

A

IHIIIII{ e

Omum
O
O
Oumm

1| =
i | =

D
— —
s =
— =
— —
P —
— —_—
—
O
Lowest point Highest point
of motion of motion

At which of the above times is the displacement zero?

A C G

-

COow
o w>»
TTm
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Example Problem

Aball on a spring is pulled down and then released. Its

subsequent motion appears as follows:
Time

B D E
[

Oumm -
C o
O =

O |-

A

Qumm:

C

— =
-— —
— — =
—_ = =
b —_ =
= —

—_— —

) _O _______

Lowest point Highest point
of motion of motion

At which of the above times is the velocity zero?

©Ow>»
OW> O
o

T mm

Answer:

1) AE, I
2)C,G
3)AE, I
HAE 1
5C, G
6)B, F
7)D,H




Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

B C D E

— —_ —_— -_—
-_— -_—
-_ -_—
-— — —_ —
— [ e ——
— —_ — —
— —_ — —
= —y
O O

Lowest point Highest point
of motion of motion

S
C o
(i =

O

[T

At which of the above times is the velocity zero?

@

oOw>
oOwW> O

T mm
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

e
| =

A
= =
= =

Lowest point Highest point
of motion of motion

At which of the above times is the acceleration zero?

A CG
I

1 1

A
B
D

Oow
T Tm

1

This one gave them the most difficulty so we looked at the free body diagram
for each (on the next slide) to make sense out of it.
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

E

LT

Without

A
ball Q@

Qumm B
Qnmm_ -
®UE
anm_ =
Ot -

3854

Qmumjn

Lowest p Highest point
porer 1
VI l l VoWl

At which of the above times is the acceleration zero?

A C G

B. AE I

C.B,F

D. D,H

This one gave them the most difficulty so we looked at the free body diagram
for each to make sense out of it.

40



Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time
E

569.

Lowest point Highest point
of motion of motion

Qmum s
Oumm -
C
Qmmu: =

Qumm |-

Oummg >
Qmmu}
O]~

At which of the above times is the kinetic energy a
maximum?

Answer:

1) AE, I
2)C,G
3)AE, I
HAE 1
5C, G
6)B, F
7)D,H
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

Lowest point Highest point
of motion of motion

At which of the above times is the kinetic energy a
maximum?
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time
C D E
C 1]

Omrml -
C
Qumn( =

Qnmm: -

A B
Lo S—a
= = = = =
= = = = =
— h— —
'O'Q"::QO -------

Lowest point Highest point
of motion of motion

At which of the above times is the potential energy a
maximum?

A CG
B. A E I
C. B F
D. D.H
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

Lowest point Highest point
of motion of motion

At which of the above times is the potential energy a
maximum?
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

OHHHH >

OHHHH =

@ IIE
SITE
anm[ o
O

Oumm

@IITE

Lowest point Highest point
of motion of moti

At which of the above times is kinetic energy being
transformed to potential energy?

A C G
. AE
. B,
. D

1

OO W
T T m

45



Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

Lowest point Highest point
of motion of motion

At which of the above times is kinetic energy being
transformed to potential energy?

A CG
. AE I
. B,
. D

OO0 mw
Tamnm
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

A

I =

C

@ITIE
@
Onmm -

o
ot =

Qmum

= —

— —J

— = =

= - =
= =

=

—— —_

. _O___._: -

Lowest point Highest point
of motion of motion

At which of the above times is potential energy being transformed to
kinetic energy?

A C,G
A

oow
omw>X>

E
,F
,H
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Example Problem

Aball on a spring is pulled down and then released. Its
subsequent motion appears as follows:

Time

O =
Omnm [-
Omum: -

C o
(=
@ [-

O -
Con] =
O]~

Lowest point Highest point
of motion of motion

At which of the above times is potential energy being
transformed to kinetic energy?

A.C G
,E,
, F
H

o0
oW
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Example Problem

A pendulum is pulled to the side and released. Its subsequent
motion appears as follows:

A B (8 D E F G H 1

Released at
this instant

1. At which of the above times is the displacement zero?
2. Atwhich of the above times is the velocity zero?
3. At which of the above times is the acceleration zero?
4. Atwhich of the above times is the kinetic energy a maximum?
5. At which of the above times is the potential energy a maximum?
6. At which of the above times is kinetic energy being transformed to
potential energy?
7. Atwhich of the above times is potential energy being transformed
to kinetic energy?
Answer:
1) CG
2)A,E, 1
3)C,G
4HC,G
5)AE, I
6)D,H
7)B, F
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Example Problem

A pendulum is pulled to the side and released. Its subsequent
motion appears as follows:

1. At which of the above times is the displacement zero? C, G
2. Atwhich of the above times is the velocity zero? A, E, |
3. At which of the above times is the acceleration zero? C, G
4. Atwhich of the above times is the kinetic energy a maximum? C,
G
5. At which of the above times is the potential energy a maximum®?
A E, I
6. At which of the above times is kinetic energy being transformed to
potential energy? D, H
7. Atwhich of the above times is potential energy being transformed
to kinetic energy? B, F
Answer:
1) CG
2)A,E, 1
3)C,G
4HC,G
5)AE, I
6)D,H
7)B, F
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Great video showing how the bottom of a slinky does not fall until the
compression has relaxed — very counterintuitive!!
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Prediction

Why is the slinky stretched more at the top than
the bottom?

A. The slinky is probably not in good shape and
has been overstretched at the top.

B. The slinky could be designed that way and if he
holds it the other way around, it'll be denser at
the top than the bottom.

C. There’s more mass pulling on the top loop so it
has to stretch more to have a upward force ix
equal to the weight mg.
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Prediction

Why is the slinky stretched more at the top than
the bottom?

A. The slinky is probably not in good shape and
has been overstretched at the top.

B. The slinky could be designed that way and if he
holds it the other way around, it'll be denser at
the top than the bottom.

C. There's more mass pulling on the top loop
so it has to stretch more to have an
upward force ix equal to the weight mg.
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Prediction

How will the slinky fall?

A. The entire thing will fall to the ground w/ an
acceleration of g.

B. The center of mass will fall w/ an acceleration of g as
the slinky compresses making it look like the bottom
doesn’t fall as fast.

C. The bottom will hover stationary in the air as the top
falls until the top hits the bottom.

D. Other watch video
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Prediction

How will the slinky fall?

A. The entire thing will fall to the ground w/ an
acceleration of g.

B. The center of mass will fall w/ an acceleration of g as
the slinky compresses making it look like the bottom
doesn’t fall as fast.

C. The bottom will hover stationary in the air as the
top falls until the top hits the bottom.

D. Other
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Why does this
happen?
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murfleblurg

He explains this terribly. Each point of the spring is suspended only from the next point above
it, and each point exactly matches the gravitational acceleration of the mass below it with
upward elastic strain. The strain must be relaxed at each point before the strain in the point
below it can relax, and it relaxes only as the coil collapses. The coil above must be collapsed
in order to stop pulling up on the suspended spring. But strain isn't localized to points so
relaxation acts as a wave.
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