Quiz 2 Phys 220 - Spring 2014

		, ,	
Names:	>	2/4	1 un

Be sure to show work or support your answer for every problem.

- 1. The text suggests betting your friend they can't catch a \$20 bill. (Warning: air resistance might actually cause you to lose that bet!) On Mars there's no atmosphere so a \$20 bill wouldn't have the air resistance problem it would here on Earth. So "Would it be a safe bet on Mars?"
 - a. Determine the reaction time on Earth for catching a ruler which is 6 inches in length. Use -9.8 m/s² for the acceleration due to Earth's gravity.
 - b. Use the reaction time you found in a. to calculate how far something will drop during that time on Mars. The gravity on Mars is 38% of that on Earth.

binch
$$(2.510m)$$
 a) $y_i = 0m$
= 15.240m $y_i = 0ms$
 $y_i = 0ms$

$$y = y = +V.4t + /(a.4t^2)$$

 $om = y + +om_3(4t) + /(2-3.72ms_2)(0.176s)^2$
 $om = y + 0.058 m$

2. A person walks 2.0 blocks East, 1.0 block North and So No it's a much worse bad, the bill then 4.0 blocks 30° South of East. What is the

magnitude of their total displacement? A = 2.0 East, O North B = D East, 1.0 North C = 3.46 East, -2.0 North

A+ = 0.1765

D is the total displace much vector Add A East + B East + C East = DEAST 7.0 + 0 + 3.46 = 5.46 Hocks Anoth + Dorth + Courth = Dworth

$$C_{x} = 4.0 \cos 20^{\circ} = 3.46 \text{ blocks}$$

$$C_{y} = 4.0 \sin 30^{\circ} = -2.0 \text{ blocks}$$

$$\vec{D} = \sqrt{2^{2} + D_{x}^{2}} = \sqrt{5.46^{2} + (-1.0)^{2}}.$$

$$= 5.6 \text{ blocks}$$

+1.0 +-20 = -1.0 blocks

tan 8 = -1.0 = -10.4°

D = 5,46 East, -1.0 North

18 = 5. 6 blocks 10.4° Sutt of East

3. The figure to the right shows a position-versus-time graph. At which lettered point or points is the object

- a. Moving the fastest? D& E
- b. Moving to the left? A
- c. Stationary 7,
- d. Speeding up? C
- e. Turning around? Somewhate
- 4. Draw the velocity-versus-time and accelerationversus-time graphs directly below the positionversus-time graph.

Be sure that the three graphs correspond (use a dotted line to show where points of interest line up.)

- 5. A ball is thrown straight up from the ground at a rate of 29.4 m/s and falls into a hole 10.0 m below where it starts.
 - a. What is its velocity the instant before it hits the bottom of the hole?
 - b. How long does it take from release for the ball to pass its original position on the way down?
 - c. What is the ball's maximum height?
 - d. What is the ball's velocity and acceleration at its maximum height?

$$v = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{\Delta t}$$

$$x_f = x_i + v_i \Delta t + \frac{1}{2} a(\Delta t)^2$$

$$a = \frac{\Delta \mathbf{v}}{\Delta \mathbf{t}} = \frac{\mathbf{v_f} - \mathbf{v_i}}{\Delta \mathbf{t}}$$

$$v_f = v_i + at$$

$$2.54 \text{ cm} = 1 \text{ inch}$$

$$100 \text{ cm} = 1 \text{ m}$$

$$v_f^2 = v_i^2 + 2a(\Delta x)$$

