Phys 220, Fall 2013

Exam 4

Version A

	Name: Solution Lab Group:
Pro	oblems 1-3: A 2.0 kg book is resting on a table. The table top is 1.5 meters above the floor.
1.	What is the potential energy of the book with respect to the table? a. 0 J b. 3 J
	b. 3J c. 20J d. 29J
2.	The book is nudged off the table. What is the kinetic energy of the book just before it hits the floor? a. 0J b. 3J c. 20J $msh = k F$ d. 29J $20h 9.8 ms^2 1.5 m = k F$ 29.45
3.	What is the speed of the book just before it hits the floor? a. 0 m/s b. 1.7 m/s c. 4.4 m/s d. 5.4 m/s $\sqrt{2gh} = V$
4.	How much work is done by gravity on the book if it is lifted off of the floor and put on a shelf 2.0 m above the floor? a. 0 J b. 29 J c29 J d. 39 J e39 J $= -2.059.8 \text{ M/s}^2.2.0 \text{ M}$
5.	

bottom. What is the doll's speed just before it hits the bottom of the ravine? (ignore air resistance)

a.
$$11 \text{ m/s}$$

b. 16 m/s
C. 22 m/s
d. 49 m/s
 $\sqrt{25h} = \sqrt{2000}$
 $\sqrt{25h} = \sqrt{2000}$
 $\sqrt{25h} = \sqrt{2000}$

What	is in the bubbles of boiling water
a.	Hydrogen Gas and Oxygen Gas
b.	Air
C	Water vapor
d.	Empty Space
	a. b.

7. What makes a bigger explosion

- a. Pure oxygen
- b. Pure hydrogen
- c. Hydrogen and oxygen
 - d. b and c
- e. a, b and c

8. In perfectly inelastic collisions

- a. only momentum is conserved.
 - b. only mechanical energy is conserved.
 - c. both momentum and mechanical energy are conserved.

9. When you lose 15 lbs, how did the largest fraction of the weight leave your body?

- a. Water (sweat, urine)
- b. Solid waste
- c. Energy
- d. Respiration water vapor
- e. Respiration carbon dioxide

10. A nail sits out in the elements and rusts. Rusting is oxidation of iron where iron and oxygen combine to form iron oxide (rust). After rusting, the nail

- a. Weighs the same
- b. Weighs less than before
- c. Weighs more than before

11. What causes the atmosphere to be denser at lower altitudes?

- a. There is more pressure
- b. There are more molecules
- c. The air is hotter
- d. gravity

12. Convert 200 °F to Celsius

- 19. The reason suction cups stick to a wall is because
 - a. The molecules of the suction cup and the wall form a weak bond.
 - b. There is a vacuum formed behind the cup when you press it that sucks it to the wall.
 - c. There is a force outside the suction cup pushing it against the wall.
- 20. You purchase a coffee on a blustery winters' day. The barista puts a nice snug lid on the coffee made out of thin plastic with two little holes in the top, one to sip from and one for air. Which form of heat transfer does this lid insulate against?
 - a. Conduction
 - b. Convection
 - c. Radiation
 - d. Evaporation
 - e. It is a poor insulator.
- 21. Which of the following changes would allow your refrigerator to use less energy to run? (1) Increasing the temperature inside the refrigerator; (2) increasing the temperature of the kitchen; (3) decreasing the temperature inside the refrigerator; (4) decreasing the temperature of the kitchen.
 - a. All of the above
 - b. 1 only
 - c. 1 and 4
 - d. 2 and 3

Smaller ST is easier to

maintan.

For the following problems, show all work for credit.

- 22. Joe (70kg) rides his 5.0 kg sled at a constant velocity 40 meters down a slight incline covered in snow. If he changes his elevation by 15 meters during this ride,
 - a. Find the average force of friction acting on the sled.
 - b. How much snow is melted by the sled if it is at 0 °C?
- 23. A 5.00 kg block of ice is at -65 °C. It is put in thermal contact with 1.00 kg of water at 50.0 °C. What is the final temperature of the system? What is the final mass of ice? What is the final mass of water? c_{water} = 4186 J/kg °C, c_{ice} =2090 J/kg °C, c_{steam} = 2010 J/kg °C, L_f =3.33 x 10 J/kg, L_v = 2.26 x 10 J/kg
- 24. A 2,000 kg Mercury Monterey and a 2,300 kg Chrysler Imperial collide head on during a demolition derby. The Monterey was initially moving at 3 m/s and the Imperial at 10 m/s. The two cars lock bumpers after the collision. How much energy was converted to thermal energy?

Version A Version B 22. Mass Toe + Sed = 75 kg Ua: +K: = Var+KF + ETH K: = Kr Since Constant velocity Uai = KENET + ETH mah: = ETH 7519 9.8m/s= 15m = ETH 75kg 9.8 m/s 2 20m = ETH = 11,025 = 14,7005 ۵. Work done by friction transferred the energy to Thomas 11,025 J = f. 40m ETH = Wf = f.d 276N= 5 14,7003 = f. som 1294N = F1 ETM = Q = MLFT 11,025.7 = M 333,000 I 14,7005 = m 333,0005/25 373, ass 5/2 = 10.044 leg 1 = 0.033 kg

```
03. 5.00 to re@-65°C
      1.00kg hate @ 60.0°C
 Heat Craved
ice 565°C-70°C
                                mcst = 5.00/ 20903/13°C (0°C-65°C)
                                        = 679.2505
 Heat Last water 60°C->0°C
                              mc AT = 1.00 kg 4186 = (0°C - 60°C)
                                         = - 251,1605
           Freeze water
                                 - M L = 1,00 333,000 }
                                         = 333,000 ]
  So I can see these is not erough energy lost by cooling weder and then freezeng it to bring theire to 0°C. That means The ice cools the water, freezes it and cools it below 0°C.
   heat lost theet garied - 0
   Web 60°C >0°C + Treezewoh + new ice toTE + 100 65°C > TE = 0
    -251,160 J + -333,000 J + m C; ST + m C; ST = 0
    - 584 160 J + 100kg 2090 = (TF-0°C) + 5.00kg 2090 = (TF-65°C)=0
   - 584,1607 + 2090- TF+ 10,450 - TF + 679,2505 = 0
                   12,540== + 95,0505 =0
                                          TF = 95,0905
                                                 12,540%
                                           = -7.6° (
                                            6.0 kg 7ce/
                                             [Okg water]
```

Version A 23. 5,00kg ice @ -65°C 1.00 kg water @ SU,0°C Heat Ganed ice -65°C ->0°C mc DT = 5,00% 2000 = (0°C-65°C) Head Lost water 50°C 70°C mest = 1.00kg 4186 J. (0°C-50°C) = 209,3002 water to ice = 1, wky 333, ws = 333,005 Cooling water and turning it to ice gives of 542,300 J oferegy b+ + wild take 679, 2505 to warm the 5.0 to chunk ofice to o°C. So the ice does not warm all the way to o'c. instead it only gets to some To below on. That means the lots of water that froze also cools below o'c to TF. heat lost at heat gamed = 0 With 50°C - 0°C + Presewater + perice 0°C >TE + ice -65°C -> TE = 0 -209,300 J + -333,000 J+mc: (Tr-0°c) + mc: (Tr-65°c) = 0

- 542,300 J + 1.0 kg 2090 5°C TF + S.O.Kg 2090 J. CTF + 679,250 J= 0

12,540 = TF + 136,950 = 0 TF = 10,90 C 6,0151ce

Collision: 24. 20013 230019 m, V, + M2 Vz; = M, V, F + M2 V2 F 10.0m/s MIVII + MZYZI = (M,+MZ) V= belove 2 words 473 + 23 why (-10,00mg) = 43 00 kg VF 4,300 KS 5000 - 3.5%= VF < VF offer Energy K11+K21 = K1 + K2 + ETH Vosin B 1/2 m, V, 2 + 1/2 m2 V2 = /2 (m, + m2) V2 + ETH 1/2 2000/ (4 "5)2 + 1/2 25 20 /g (10 mg)2 = 1/2 43 only (3.480 mg)2 + Exy 16000 J + 115,000 = Z6,162 J + Em 104,837J = ETH 105,000J= EM Vession A (-11.5:00 ; 3°15 + 23 w/y (-10.m/s) = 4300/g VF -3.95% = VF 3m/s 10m/s Eregy: K.i+k2: = K.F+ K2+ + ETH VE 1/2 m V. 2 + /2 m 2 V 2 = 1/2 (m+m2) V = + 7 74 1/2 2000 (3"3) + 1/2 2300 (10"3) = 1/2 4300 (5.95"3) + ETH 90007 + 115,0005 = 33,6055 + ETH 90,395J = ETH (90,000) = ETH

Phys 220, Fall 2013 Exam 4 Version B

Lab Group: _

Name: Solution

Pro	oblems	1-3: A 1.7 kg book	is resting on a table. The table top is 1.2 meters above the floor.
1.	What	is the potential er	nergy of the book with respect to the table?
	The company of the	01	mgh = Va
	b.	3 J	
	c.	20 J	2015 9.8° 152 0M = OJ
	d.	29 J	
2.	The bo	ook is nudged off	the table. What is the kinetic energy of the book just before it hits the floor?
		01	
		3 J	Ua; = KF
	(c.)	20 J	
		29 J	mgh; = ks
			1.7kg 9.8 % 52 l. 2m = 20.0 J
3.			e book just before it hits the floor?
		0 m/s	Uq; = KF
	b. <	2.4 m/s 2.1	$V_{G} := I_{G} I_{G}$
	c.	3.3 m/s 3.4	mgh = 12 ngve
	(d.)	4.4 m/s 4.8	Jzgh = V
4.	How m	nuch work is done	$\frac{72 \text{ m/s}}{\sqrt{25 \text{ m}}} = \frac{72 \text{ m/s}}{\sqrt{25 \text{ m}}} = \frac{4.8 \text{ m/s}}{\sqrt{25 \text{ m}}}$ by gravity on the book if it is lifted off of the floor and put on a shelf 2.0 m
	above	the floor?	
	a.	01	W= Fd
	b.	20 J	
	C.	- 20 J	mg d
	d.	33 J	
	(e.)	- 33 J	= - 1.7 kg 9.8 m/s2 2.0 m
			2 33 5
5.	A boy t	hrows his sister's	doll off a cliff high above the ravine below. The doll is thrown at an angle of
			a maximum height of 30 meters above the ravine before landing in the
			Il's speed just before it hits the bottom of the ravine? (ignore air resistance)
		12 m/s	Vai = Ke
		17 m/s 24 m/s	
	Contraction of the Party of the	30 m/s	ough = 1/2 odve
	u.	30 111/3	
			Jzgh = V
			1/29.8° /2 30m = 24.2 m/s
			1

	e.	b and c
8.	In per	fectly elastic collisions
	a.	only momentum is conserved.
	b.	only mechanical energy is conserved.
		both momentum and mechanical energy are conserved.
9.	When	you lose 15 lbs, how did the largest fraction of the weight leave your body?
	a.	Energy
	b.	Water (sweat, urine)
	c.	Solid waste
	(d.)	Respiration – carbon dioxide
	e.	Respiration – water vapor
10.		sits out in the elements and rusts. Rusting is oxidation of iron where iron and oxygen combine
		n iron oxide (rust). After rusting, the nail
		Weighs more than before
		Weighs the same
	C.	Weighs less than before
11	What (causes the atmosphere to be denser at lower altitudes?
11.		There is more pressure
		The air is hotter
		There are more molecules
		gravity
	()	gravity
12.	Conver	t 200 °F to Celsius
		93°C T== 9/5 Te +32°F
	b.	149 °C
	c.	182°C = (TF-32°F) = Tc
	d.	392 °C 9
		1 7 - 12201
		5/a (200° F-32° F) = Te = 933° C

6. What is in the bubbles of boiling water?

c. Water vapor d. Empty Space

d. a, b and c

7. What makes a bigger explosion
a. Pure oxygen
b. Pure hydrogen
d. Hydrogen and oxygen

b. Hydrogen Gas and Oxygen Gas

c. < 0 °C d. 0 °C e. b or d.

19.	The re	eason suction cups stick to a wall is because
	a.	The molecules of the suction cup and the wall form a weak bond.
	b,	There is a force outside the suction cup pushing it against the wall. There is a vacuum formed behind the cup when you press it that sucks it to the wall.
20.		urchase a coffee on a blustery winters' day. The barista puts a nice snug lid on the cof

- coffee made out of thin plastic with two little holes in the top, one to sip from and one for air. Which form of heat transfer does this lid insulate against?
 - a. Convection
 - b.) Evaporation
 - c. Conduction
 - d. Radiation
 - e. It is a poor insulator.
- 21. Which of the following changes would allow your refrigerator to use less energy to run? (1) Increasing the temperature inside the refrigerator; (2) increasing the temperature of the kitchen; (3) decreasing the temperature inside the refrigerator; (4) decreasing the temperature of the kitchen.
 - a. 1 only

12

b.) 1 and 4

c. 2 and 3

d. All of the above

Smaller IT is easier to

mantan.

For the following problems, show all work for credit.

- 22. Joe (70kg) rides his 5.0 kg sled at a constant velocity 50 meters down a slight incline covered in snow. If he changes his elevation by 20 meters during this ride,
 - a. Find the average force of friction acting on the sled.
 - b. How much snow is melted by the sled if it is at 0 °C?
- 23. A 5.00 kg block of ice is at -65 $^{\circ}$ C. It is put in thermal contact with 1.00 kg of water at 60.0 $^{\circ}$ C. What 15 is the final temperature of the system? What is the final mass of ice? What is the final mass of water? $c_{\text{water}} = 4186 \text{ J/kg}^{\circ}\text{C}$, $c_{\text{ice}} = 2090 \text{ J/kg}^{\circ}\text{C}$, $c_{\text{steam}} = 2010 \text{ J/kg}^{\circ}\text{C}$, $L_f = 3.33 \times 10^5 \text{J/kg}$, $L_v = 2.26 \times 10^5 \text{J/kg}$ 10⁶J/kg
- 24. A 2,000 kg Mercury Monterey and a 2,300 kg Chrysler Imperial collide head on during a demolition 10 derby. The Monterey was initially moving at 4 m/s and the Imperial at 10 m/s. The two cars lock bumpers after the collision. How much energy was converted to thermal energy?