Exam 2 – Version A Physics 220

Fall 2013

Group:

1.	A boy slides down a playground slide. The force pair for his normal force is		
	a.	The slide on the boy	normal force is slide on boy
	b.	The earth on the boy	W001 2
	C.	The boy on the earth	
	(d)	The boy on the slide	
		Friction	
2.	The eart	h applies a gravitational for	e on a ball when you drop it. Therefore the ball rushes towards the earth (in
			our friend says, "according to Newton's 3 rd law, the ball exerts just as big a force
			should rush up to meet the ball." You explain that
	a.		
			1 - 11.00
			aller for the earth towards the ball
	C.		earth is smaller than the force of the earth on the ball.
	d.	The earth does rush up to n	eet the ball halfway.
_			
3.			ir living room. In one case, they pull perfectly
		easier to move the sofa? W	an angle as shown in the 2 nd diagram. In which
		Pulling Horizontally	
		Pulling at an angle	Pulling up as well as hor sontal Soless normal force which
		Both are equally as difficult	Soless normal force which
			results in less friction.
4.	A large t	ruck breaks down out on the	road and receives a push back into town by a small compact car as shown in
	the figur	e below.	
			While the car, still pushing the truck, is traveling at a
		_ A	CME constant speed, we know that the force of the car on
			fer co. the truck equals the force of the truck on the car.
		: ¬₽Ω——O _R IC	
		on for this is:	
	a.	since the truck is traveling a	a constant speed, the net force will be zero; therefore, the two forces are equal
		and opposite.	
			irs so are equal and opposite.
	C.	c. not related to the speeding up, slowing down or constant speed of the truck.	
	d.	Both a and b	
	(e.)	Both b and c	
	Municipal (
	Two child	fren fight over a 200 g stuffe	bear. The 25 kg boy pulls to the right with a 15 N force and the 20 kg girl pulls
			all other forces on the bear (such as its weight). What is the magnitude and
	direction	of its acceleration?	ing the mail torse is greater than weight.
	a.	10 m/s ²	Normal large is less than weight NSI
		15 m/s ²	(C) Normal force equals weight
	C.	20 m/s ²	d. We can't tell about the nemal force without knowing the speed
	d.	1.5 m/s ²	2F=18N+15N=Ma
			2F = 78N + 15N = Ma -3N = 0.20 + 5a
			2 . 1
			- 10 = 1

0.20/2

The Singapore Flyer is currently the world's tallest Ferris wheel with a diameter of 150 meters. A passenger on the Ferris wheel finds that one rotation takes 200 seconds to go all the way around.

- 14. What is the angular velocity of this Ferris wheel?
 - a. 0.005 rad/s
 - (b.) 0.031 rad/s
- W= = = 2TT = 0.0314 ads
- c. 0.75 rad/s
- d. 2.4 rad/s
- e. 200 rad/s
- 15. What is the period of the Singapore Flyer?
 - a. 0.005 s
 - b. 0.031 s
 - c. 0.75 s
 - d. 2.4 s
 - e. 200 s
- 16. Suppose Neptune could be moved to the location of Earth and put into a circular orbit around the sun. What would Neptune's period be in that orbit?
 - a. 24 hours
 - (b.) 365 days
 - c. 165 days
 - d. 11.9 years
 - e. 165 years
- 17. A person is standing on a scale in an elevator as it moves. At the instant shown, the elevator is moving down at 3 m/s and is speeding up at 2 m/s². What does the scale read in Newtons if the person has a mass of 70 kg?

 - b. 686 N
 - 826 N
 - 546 N
 - e. 476 N

n La EF=n-w=ma n=w-ma

- 18. Determine the acceleration due to gravity on Jupiter
 - a. 3.77 m/s^2
 - b. 8.88 m/s^2
 - c. 9.8 m/s^2
 - d. 25.9 m/s²
 - e. 274 m/s²

g = Gm = 6.67x15" NM2 1.19x1022 kg

= 25.9M/2

- 19. A pitcher exerts a force (assumed to be horizontal and constant) on a baseball that is pitched at 40 m/s over a distance of 1.0 m, and a baseball has a mass of 145 g.
 - a. Draw a free body diagram of the ball during the pitch
 - b. Determine the force applied by the pitcher during the pitch.
- 20. A 5.0 bucket is lowered into a well. Find the tension in the rope for the following two circumstances: (Include a free body diagram and sum of forces for maximum partial credit)
 - a. Acceleration downward at 2.0 m/s²
 - b. Constant velocity

Version A 19. X:= DM V==V:2 +2014 XF= 1.0m VF2-V:2 = A V1 = 0 16 VF = 40 1/2 (45mg) = a = 800m/g2 a = ? 2(1.0m) At = ? F=ma = 0.145 kg.800mg2 - 11101 20. a. 25= T-W =- ma か しな T= w-ma = mg-ma = m(g-a)

= 5.0kg (9.8m/52 - 2.0m/52) = 392

1 20 EFy = T-W= 0 T= mg T= 5.0 kg 9.80/52 = 49 N

Hand supports the ball & poshes it Dinad FM > Ju =

or ne Freally w I F hand

> F= Force of his hand

Version A

At = 3.05

a. $f = ma - \omega s in 10^{\circ}$ $f = 35, \omega kg 10^{\circ}s^{2} - 35, \omega kg 9.8^{\circ}s^{2} sin 10^{\circ}$ = 350,000N - 59,561N

 $X_{i} = Om$ $X_{i} = Om$ $X_{i} = 30^{m}/s$ $V_{i} = 30^{m}/s$ $V_{i} = 30^{m}/s$ $V_{i} = 0m/s$ $V_{i} = 0m/s$

= 290,439 N = 290,000N

b. $f = \mu \cap$ $n = w \cos 10^{\circ}$ = 35,000 kg 9.8 m/sz cos 10°

= 337,789 N

f = Mn $N = f = \frac{290,439N}{337,789N}$ 1 = 0.86