Name: _____

- 1. Consider a material in its solid phase, liquid phase and gas phase.
 - a. Please use diagrams to show how they each appear at the molecular level. See States of Matter PhET simulation
 - b. Describe how the molecules move in each phase and how their movement differs from one phase to the other.

Solid	Liquid	Gas
Molecules in a solid wiggle	Molecules in liquids move	Molecules in a gas move with
constantly but not as fast as	around throughout the liquid	much greater speeds than
molecules in a liquid	bumping into one another but	molecules in liquids and bounce
	still hang out at the bottom of	all over the place filling all the
	the container	available space
Solíds are bound tíghtly	Líquíds also have bonds between	Gas molecules do not have
together in a structure.	the molecules but these bonds	bonds between the individual
Sometimes they form a	are not as tight as those in solid	molecules. (However, this is not
crystalline shape based on their	phase	to be confused with the bonds
bonds		that make a molecule what it is.
		Water for example is still a
		bound Oxygen with two
		hydrogens)

2. What's in the bubbles of boiling water?

Water vapor which is steam or H_2O . Not separate hydrogen and separate oxygen molecules. It takes MUCH more energy to break the bonds that make H_2O what it is than it does to turn water into steam!

3. What are the conditions that allow molecules to stop moving completely?

The temperature reaches absolute zero which is 0 Kelvin. Otherwise molecules are wiggling.

4. How heavy would you say the air in this room is? Could you lift it (assuming it could be put in a container that you can get a good grip on)?

Depending on lab density averages, we came up with roughly 500 - 1100 pounds for the lab. You cannot lift the air in the class room is much much larger so you clearly can't lift the air in the class room.

5. Why does ice take more space than the same amount of water? Show on a molecular level why this is.

Water is a very unusual substance. It's the only material that expands as it gets colder. You can see with the States of Matter simulation how ice has a crystalline structure that creates large pockets of space. This is why ice takes up more space than liquid water.

6. What happens to molecules if you add more energy to them?

They move faster - or they break their bonds that make them a solid or a liquid.