A 2000 kg truck hits a 1000 kg car.

How does the force felt by the truck compare to the force felt by the car?
A. Force felt by truck is greater than force felt by car B. Force felt by car is greater than force felt by truck
C. Force felt by each is equal
D. Not enough info

A 2000 kg truck hits a 1000 kg car.

Suppose the truck slows down by $5 \mathrm{~m} / \mathrm{s}$ during the collision.
Does it sound reasonable to say the car speeds up by $10 \mathrm{~m} / \mathrm{s}$?
A. Yes
B. No

acceleration

Acceleration of the truck is less than (exactly half) the acceleration of the car

Equal force felt by each!

$$
\text { Force }=\text { mass } x \text { acceleration }
$$

More mass less acceleration

Less mass more acceleration

Equal force felt by each!

$$
\text { Force }=\text { mass } x \text { acceleration }
$$

twice mass half acceleration

half mass twice acceleration

Cause and Effect

Force is the Cause

Acceleration is the Effect

A 2000 kg truck hits a 1000 kg car.

How does the force felt by the truck compare to the force felt by the car?
A. Force felt by truck is greater than force felt by car B. Force felt by car is greater than force felt by truck C. Force felt by each is equal
D. Not enough info

Push on roller blades

If David pushes Eugenia,
A. Eugenia will roll forward and David will stay where he is
B. Eugenia will roll forward and David will roll backwards
C. Eugenia will stay where she is and David will roll backwards

Push on roller blades

If David pushes Eugenia,
A. Eugenia will roll forward and David will stay where he is
B. Eugenia will roll forward and David will roll backwards
C. Eugenia will stay where she is and David will roll backwards

Push on roller blades

If David pushes Eugenia, who rolls faster?
A. David
B. Eugenia
C. Same speed

Push on roller blades

If David pushes Eugenia, who rolls faster?
A. David
B. Eugenia
C. Same speed

Cause and Effect

Force is the Cause

Acceleration is the Effect

Push on roller blades

If Eugenia pushes David,
A. David will roll forward and Eugenia will stay where she is
B. David will roll forward and Eugenia will roll backwards
C. David will stay where he is and Eugenia will roll backwards

Push on roller blades

If Eugenia pushes David,
A. David will roll forward and Eugenia will stay where she is
B. David will roll forward and Eugenia will roll backwards
C. David will stay where he is and Eugenia will roll backwards

Push on roller blades

If David pushes Eugenia, who rolls faster?
A. David
B. Eugenia
C. Same speed

Push on roller blades

If David pushes Eugenia, who rolls faster?
A. David
B. Eugenia
C. Same speed

Cause and Effect

Force is the Cause

Acceleration is the Effect

Pull on roller blades

If David pulls Eugenia,
A. Eugenia will roll forward and David will stay where he is
B. Eugenia will roll forward and David will roll forward
C. Eugenia will stay where she is and David will roll forward

Pull on roller blades

If David pulls Eugenia,
A. Eugenia will roll forward and David will stay where he is
B. Eugenia will roll forward and David will roll forward
C. Eugenia will stay where she is and David will roll forward

Pull on roller blades

If David pulls Eugenia, who rolls faster?

A. David
B. Eugenia
C. Both Same

Pull on roller blades

If David pulls Eugenia, who rolls faster?

A. David
B. Eugenia
C. Both Same

Pull on roller blades

If Eugenia pulls David,
A. David will roll forward and

Eugenia will stay where she is
B. David will roll forward and Eugenia will roll forward
C. David will stay where he is and Eugenia will roll forward

Pull on roller blades

If Eugenia pulls David,
A. David will roll forward and Eugenia will stay where she is
B. David will roll forward and Eugenia will roll forward
C. David will stay where he is and Eugenia will roll forward

Pull on roller blades

If Eugenia pulls David, who rolls faster?

A. David
B. Eugenia
C. Both Same

Pull on roller blades

If Eugenia pulls David, who rolls faster?
A. David
B. Eugenia
C. Both Same

Pairs of Forces

- Force of A on B and Force of B on A
- Force of truck on car
- Force of car on truck
- Force of David pulling Eugenia
- Force of Eugenia pulling David
- Force of David pushing Eugenia
- Force of Eugenia pushing David

$F_{\text {bat on the ball }}$

$F_{\text {ball on the bat }}$

Bat and Ball - only objects of interest

Basketball player jumps

F ground on player

F player on ground

Ball toss

A boy tosses a tennis ball over the fence. Let's say he tosses it with a speed of $10 \mathrm{~m} / \mathrm{s}$. When the ball reaches its highest point, it's velocity is
A. zero
B. $10 \mathrm{~m} / \mathrm{s}$
C. $-10 \mathrm{~m} / \mathrm{s}$
D. Not enough info

Both ways are "free fall" because the only force is gravity. Physically it's the same.

Speed changing by 9.8 m / s every second in the downward direction.

Ball toss

A boy tosses a tennis ball over the fence. Let's say he tosses it with a speed of $10 \mathrm{~m} / \mathrm{s}$. When the ball reaches its highest point, it's velocity is
A. zero
B. $10 \mathrm{~m} / \mathrm{s}$
C. $-10 \mathrm{~m} / \mathrm{s}$
D. Not enough info

Ball toss

A boy tosses a tennis ball over the fence. Let's say he tosses it with a speed of $10 \mathrm{~m} / \mathrm{s}$. When the ball reaches its highest point, it's acceleration is
A. zero
B. $9.8 \mathrm{~m} / \mathrm{s}^{2}$
C. $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
D. Not enough info

Both ways are "free fall" because the only force is gravity. Physically it's the same.

Speed changing by 9.8 m / s every second in the downward direction.

Ball toss

A boy tosses a tennis ball over the fence. Let's say he tosses it with a speed of $10 \mathrm{~m} / \mathrm{s}$. When the ball reaches its highest point, it's acceleration is
A. zero
B. $9.8 \mathrm{~m} / \mathrm{s}^{2}$
C. $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
D. Not enough info

