Speed, acceleration, friction, inertia, force, gravity

10/1/14

Speed and Acceleration

- Which car has a higher speed?

A

C. Not enough information

Speed and Acceleration

- Which car has a higher speed?

A

B

C. Not enough information

Speed and Acceleration

- Which car has a greater acceleration?

A

C. Not enough information

Speed and Acceleration

- Which car has a greater acceleration?

A

C. Not enough information

Acceleration

Rate of change of speed

If a car accelerates at 20 miles/hour/second it means that every second the car speeds up by 20 miles/hour

Starts at 20 miles per hour.
1 second later it is going
A. 40 miles/hour
C. 22 miles/hour
B. 30 miles/hour
D. 60 miles/hour

Acceleration

Rate of change of speed

If a car accelerates at 20 miles/hour/second it means that every second the car speeds up by 20 miles/hour

Starts at 20 miles per hour.
1 second later it is going
A. 40 miles/hour
B. 30 miles/hour
C. 22 miles/hour
D. 60 miles/hour

Acceleration

Rate of change of speed

If a car accelerates at 20 miles/hour/second it means that every second the car speeds up by 20 miles/hour

Starts at 20 miles per hour.
2 seconds later it is going
A. 40 miles/hour
B. 30 miles/hour
C. 24 miles/hour
D. 60 miles/hour

Acceleration

Rate of change of speed

If a car accelerates at 20 miles/hour/second it means that every second the car speeds up by 20 miles/hour

Starts at 20 miles per hour.
2 seconds later it is going
A. 40 miles/hour
B. 30 miles/hour
C. 24 miles/hour
D. 60 miles/hour

Acceleration

Rate of change of speed

Often you'll see $\mathrm{m} / \mathrm{s}^{2}$
Just means meters/second/second
$1 \mathrm{~m} / \mathrm{s}^{2}$ is equal to
A. traveling 1 meter every second
B. A speed of 1 meter/second
C. Speeding up 1 meter/second every second

Acceleration

Rate of change of speed

Often you'll see $\mathrm{m} / \mathrm{s}^{2}$
Just means meters/second/second
$1 \mathrm{~m} / \mathrm{s}^{2}$ is equal to
A. traveling 1 meter every second
B. A speed of 1 meter/second
C. Speeding up 1 meter/second every second

Natural Motion

- Sitting still
- Constant speed

Natural Motion $=$ No acceleration, no change in speed

Newton's First Law

If an object has no force acting on it, If it is at rest, it will remain at rest; If it is moving, it will continue to move in a straight line at a constant speed.

The natural state of an object - its behavior if free of external influences - is uniform motion with constant speed!

If it is moving, it will continue to move in a straight line at a constant speed.

Then, why do things slow down?
A. Natural motion
B. Friction
C. Newton was wrong!

If it is moving, it will continue to move in a straight line at a constant speed.

Why do things slow down?
A. Natural motion
B. Friction
C. Newton was wrong!

Inertia

- Harder to get heavier objects going.
- Takes more force

At rest stays at rest

Inertia

- Harder to stop heavier objects.
- Takes more force.

In motion stays in motion!

Natural Motion

- Sitting still
- Constant speed

Natural Motion $=$ No acceleration, no change in speed

