			Units:	Formulae point charges <u>only</u>		
<u>Vectors</u>	Electrostatic Force:	$\overrightarrow{F_e}$ \overrightarrow{E}	Newtons: N = $\frac{\text{kg m}}{\text{s}^2}$ $\frac{\text{Newtons}}{\text{Coulomb}} = \frac{\text{N}}{\text{C}} = \frac{\text{V}}{\text{m}}$	$F_e = K \frac{ q_1 q_2 }{r^2}$ $E = K \frac{ q }{r^2}$	$\vec{F} = q\vec{E}$	
<u>Scalars</u>	Electric Potential Energy:	U _{elec} V	Joules: $J = N m = V C$ Volts: $V = \frac{N m}{C}$	$U_{elec} = K \frac{q_1 q_2}{r}$ $V = K \frac{q}{r}$	$\Delta U_{elec} = q \Delta V = -q E \Delta x$ $\Delta V = -E \Delta x$	
	Change in Potential Energy Potential Difference	ΔU_{elec} ΔV	Volts: V			
	Capacitors:					
	Charge: Capacitance:	Q C	Coulomb: C Farad: F	$Q = C \Delta V_C$ $C = Q / \Delta V_C$	$C = \kappa \varepsilon_o A / d$	
	Potential energy stored in a capacitor	U _c	Joules: J	$U_c = \frac{1}{2} Q \Delta V_c = \frac{1}{2} C (\Delta V)$	$J_c = \frac{1}{2} Q \Delta V_c = \frac{1}{2} C (\Delta V_c)^2 = \frac{1}{2} Q^2 / C$	
	Other useful relationships for capacitors:			$\vec{F} = q\vec{E}$	$\Delta V = -E\Delta x$	

$$K = 8.99 \text{ x } 10^9 \text{ Nm}^2/\text{C}^2$$

$$\mu = \text{micro} = 10^{-6}$$

$$E_o = \frac{1}{4\pi K} = 8.85 \text{ x } 10^{-12} \text{ C}^2/\text{Nm}^2$$

$$E \text{lectron charge: } e = -1.6 \text{ x } 10^{-19} \text{ C}$$

$$p = \text{pico} = 10^{-12}$$

$$p = \text{pico} = 10^{-12}$$