## Speed of Sound

- Speed of a wave on a string:

$$
v=\sqrt{\frac{T}{\mu}}
$$

- T is tension sometimes listed as F for force on string.
- $\mu$ is the density of the string mass/length

$$
v=\sqrt{\frac{T}{\mu}} \text { and } f=v / \lambda
$$

If wavelength is fixed, how does frequency change if v goes up?
a. Goes up
b. Goes down

$$
v=\sqrt{\frac{T}{\mu}} \quad \text { and } f=v / \lambda
$$

If wavelength is fixed, how does frequency change if $v$ goes up?
a. Goes up
b. Goes down

If the string is fatter - bigger $\mu$, does the speed go up or down?
a. Goes up
b. Goes down

$$
\nu=\sqrt{\frac{T}{u}} \text { and } f=v / \lambda
$$

If wavelength is fixed, how does frequency change if $v$ goes up?
a. Goes up
b. Goes down

If the string is fatter - bigger $\mu$, does the speed go up or down?
a. Goes up
b. Goes down

So, the frequency for a fatter string of the same length is?
a. Lower
b. higher

$$
v=\sqrt{\frac{T}{\mu}} \text { and } f=v / \lambda
$$

If wavelength is fixed, how does frequency change if $v$ goes up?
a. Goes up
b. Goes down

If you tighten a string, the speed
a. Goes up
b. Goes down

$$
v=\sqrt{\frac{T}{\mu}} \quad \text { and } f=v / \lambda
$$

If wavelength is fixed, how does frequency change if $v$ goes up?
a. Goes up
b. Goes down

If you tighten a string, the speed
a. Goes up
b. Goes down

So, the frequency for a tighter string of the same length is?
a. Lower
b. higher

$$
f=v / \lambda
$$

$1^{\text {st }}$ harmonic $\lambda_{1}=2 \mathrm{~L}$


2nd harmonic $\lambda_{2}=\mathrm{L}$


3rd harmonic $\lambda_{3}=2 / 3 \mathrm{~L}$


4th harmonic $\lambda_{4}=1 / 2 \mathrm{~L}$


Nth harmonic $\lambda_{n}=2 L / n$ so $f=\mathrm{n} v /(2 \mathrm{~L})$

## In air

$v=331 \mathrm{~m} / \mathrm{s} \sqrt{1+\frac{T}{273}}$

If the air is hotter, is the speed of sound
a. Faster
b. slower

## In air

$v=331 \mathrm{~m} / \mathrm{s} \sqrt{1+\frac{T}{273}}$

If the air is hotter, is the speed of sound
a. Faster
b. Slower

Does hotter air have more collisions or less than colder air?
a. More
b. less

## In air

$$
v=331 \mathrm{~m} / \mathrm{s} \sqrt{1+\frac{T}{273}}
$$



Does hotter air have more collisions or less than colder air?
a. More
b. less

## $V^{2}=\underline{\text { rigidity }}$ Inertia

$$
v=\sqrt{\frac{T}{\mu}}
$$

| Material | Speed of sound |  |
| :--- | :--- | :--- |
| Air $\left(0^{\circ} \mathrm{C}\right)$ | $331 \mathrm{~m} / \mathrm{s}$ |  |
| Air $\left(20^{\circ} \mathrm{C}\right)$ | $343 \mathrm{~m} / \mathrm{s}$ |  |
| hydrogen | $1290 \mathrm{~m} / \mathrm{s}$ |  |
| Water | $1490 \mathrm{~m} / \mathrm{s}$ |  |
| Aluminum | $5100 \mathrm{~m} / \mathrm{s}$ |  |
| Lead | $1320 \mathrm{~m} / \mathrm{s}$ |  |
| Rubber | $54 \mathrm{~m} / \mathrm{s}$ |  |

