Speed of Sound

• Speed of a wave on a string:

$$v = \sqrt{\frac{T}{\mu}}$$

- T is tension sometimes listed as F for force on string.
- μ is the density of the string mass/length

 $v = \sqrt{\frac{T}{\mu}} \quad \text{and} f = v/\lambda$

- a. Goes up
- b. Goes down

 $v = \sqrt{\frac{T}{\mu}} \quad \text{and} f = v/\lambda$

- a. Goes up
- b. Goes down

If the string is fatter $\ \$ bigger $\mu,$ does the speed go up or down?

- a. Goes up
- b. Goes down

 $v = \sqrt{\frac{T}{\mu}} \quad \text{and} f = v/\lambda$

- a. Goes up
- b. Goes down

If the string is fatter $\ \$ bigger $\mu,$ does the speed go up or down?

- a. Goes up
- b. Goes down

So, the frequency for a fatter string of the same length is?

- a. Lower
- b. higher

 $v = \sqrt{\frac{T}{\mu}} \text{ and } f = v/\lambda$

- a. Goes up
- b. Goes down
- If you tighten a string, the speed
- a. Goes up
- b. Goes down

 $v = \sqrt{\frac{T}{\mu}} \quad \text{and} f = v/\lambda$

- a. Goes up
- b. Goes down
- If you tighten a string, the speed
- a. Goes up
- b. Goes down
- So, the frequency for a tighter string of the same length is?
- a. Lower
- b. higher

$$f = v/\lambda$$

4th harmonic $\lambda_4 = 1/2L$

Nth harmonic $\lambda_n = 2L/n$ so f = nv/(2L)

In air

$$v = 331 \, m/s \sqrt{1 + \frac{T}{273}}$$

If the air is hotter, is the speed of sound

- a. Faster
- b. slower

In air

$$v = 331 \, m/s \sqrt{1 + \frac{T}{273}}$$

If the air is hotter, is the speed of sound

- a. Faster
- b. Slower

Does hotter air have more collisions or less than colder air?

- a. More
- b. less

In air

$$v = 331 \, m/s \sqrt{1 + \frac{T}{273}}$$

@2002, Dan Russell

Does hotter air have more collisions or less than colder air?

- a. More
- b. less

V² = <u>rigidity</u> Inertia

Material	Speed of sound
Air (0°C)	331 m/s
Air (20°C)	343 m/s
hydrogen	1290 m/s
Water	1490 m/s
Aluminum	5100 m/s
Lead	1320 m/s
Rubber	54 m/s