Sign Conventions

Mirrors

$p=$ object distance	+	object in front of the mirror
$q=$ image distance	+	image in front of the mirror - REAL
	-	Image behind the mirror - VIRTUAL
$h=$ object height $\}$	+	points up - upright
$h^{\prime}=$ image height $\}$	-	points down - inverted
$M=$ magnification	+	upright
	-	inverted
$M=\frac{h^{\prime}}{h}=\frac{-q}{p}$		
$f=$ focal length	+	concave/converging
	-	convex/diverging
Mirror Equation:		$=\frac{2}{2}$

Lenses

$p=$ object distance	+	object in front of the lens object behind the lens
$q=$ image distance	+	image behind the lens - REAL
		Image in front of the lens - VIRTUAL
$h=$ object height $\}$	+	points up - upright
$h^{\prime}=$ image height $\}$	-	points down - inverted
$M=$ magnification	+	upright
	-	inverted
$M=\frac{h^{\prime}}{h}=\frac{-q}{p}$		
$R_{l} \& R_{2}{ }^{2}$ Radii of curvature	+	in back
$R_{1} \& R_{2}$ for the front and back surfaces respectively		in front
$f=$ focal length	+	converging
	-	diverging

Thin Lens Equation: $\quad \frac{1}{p}+\frac{1}{q}=\frac{1}{f}$
Lens Maker's Equation: $P=\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

