Sign Conventions

p = object distance	+	object in front of the mirror
q = image distance	+ -	image in front of the mirror – REAL Image behind the mirror – VIRTUAL
h = object height h' = image height	+ -	points up – upright points down – inverted
M = magnification $M = \frac{hr}{h} = \frac{-q}{p}$	+ -	upright inverted
f = focal length	+ -	concave/converging convex/diverging
Mirror Equation:	$\frac{1}{p} + \frac{1}{q} =$	$=\frac{1}{f}=\frac{2}{R}$

Lenses

p = object distance	+ -	object in front of the lens object behind the lens
q = image distance	+ -	image behind the lens – REAL Image in front of the lens – VIRTUAL
h = object height h' = image height	+ -	points up – upright points down – inverted
M = magnification	+	upright
$M = \frac{h'}{h} = \frac{-q}{p}$	-	Inverted
$R_1 \& R_2$ Radii of curvature $R_1 \& R_2$ for the front and back surfaces respectively	+ -	in back in front
f = focal length	+ -	converging diverging
Thin Lens Equation:	$\frac{1}{p} + \frac{1}{q} =$	$\frac{1}{f}$
Lens Maker's Equation:	$P = \frac{1}{f}$	$= (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$