Closer Look
 The Retina and Color Sensitivity

Structure of the Retina

ught entering the retina first passes through outer layers, consisting of nerve undings and connecting cells, before maching the receptor cells, where an imze is formed and detected by photosenitve molecules. There are two types of receptor cells, called "rods" and "cones" tecause of the rod or cone shapes of the tinds of these cells (Fig. 25-A).
Receptor cells are not connected dimetly to nerve fibers. Between the recepfor cells and the nerve fibers is a layer of bipolar" cells. One end of these cells intracts electrically with receptor cells xross small gaps, or "synapses"; the wher end interacts across synapses with terve fibers (Fig. 25-B). It is the complexty of this electrical network that gives be retina its brainlike capacity to analyze isual images.

Intensity Range: Scotopic and Photopic Vision

The eye is able to adapt to an enormously wide range of light intensities. For example, you can read a book in bright sunlight or look at the stars at night. The intensity of starlight reaching your eyes is only about $10^{-6} \mathrm{~W} / \mathrm{m}^{2}$, but light reflected from a book in direct sunlight has an intensity at the eye on the order of $10 \mathrm{~W} / \mathrm{m}^{2}$. So given time to adapt to different lighting conditions, the eye is effective over a range of intensities varying by a factor of at least 10^{7}. Actually the entire range of sensitivity is much greater than this. Experiments on the threshold of vision for the dark-adapted eye have shown a sensitivity to light much weaker than starlight. Light can be detected when as few as 100

Fig. 25-B Typical connection of foveal cones with nerve fibers through bipolar cells.
photons* enter the eye in an interval of 0.001 s . When the eye is exposed to a scene in bright sunlight, in an interval of 0.001 s the eye receives on the order of 10^{12} photons-roughly 10^{10} times the number at the threshold of vision.

Part of the eye's adaptation between light and dark involves the size of the pupil, but the pupil diameter can vary only from about 2 mm to about 6 mm . This means that the area of the pupil can vary only by a factor of $3^{2}=9$. This accounts for only a small part of the eye's ability to adapt. Most of it comes from the way the retina responds to vastly different intensities.

The eye possesses a dual system for detecting light over two intensity ranges. Light-adapted vision, called photopic vision, utilizes only cones. Dark-adapted vision, called scotopic vision, utilizes only rods. Pure scotopic vision occurs in light of intensity less than about $10^{-3} \mathrm{~W} / \mathrm{m}^{2}$ (a little less bright than a moonlit night). The cones are then completely inoperative, and light is detected solely through absorption of photons by the rhodopsin molecules, located at the ends of the rod cells. With scotopic vision there is no color sense; although the eye is sensitive to various frequencies, these are sensed not as colors but as shades of gray, as in a

[^0]
Closer Look

black and white photograph. Visual acuity. the ability to see fine details, is very limited under scotopic conditions. For example, it is impossible to read fine print under these conditions.

The Visible Spectrum

Although "visible light" constitutes only that part of the electromagnetic spectrum with vacuum wavelengths between about 400 nm to 700 nm , the retina is actually somewhat sensitive to ultraviolet light, with wavelengths shorter than 400 nm . These shorter wavelengths are not normally sensed because most such light is absorbed by other parts of the eye before reaching the retina. The cornea absorbs wavelengths below 300 nm , and the lens absorbs almost all light of wavelength below 400 nm . The lens thus protects the retina from the potentially damaging UV light from 300 nm to 400 nm .*

Spectral Sensitivity

For scoptic vision, the eye's sensitivity to various frequencies is not the same as for photopic vision (shown at the beginning of Chapter 23). Fig. 25-C shows both scotopic and photopic sensitivities in a single graph. Notice that under photopic conditions the eye has maximum sensitiv-
*In time the lens itself may be damaged by the absorption of UV light. (This often occurs in older individuals who have spent a lifetime exposed to sunlight, especially in tropical areas where sunlight is most intense, or in the Arctic zone where much sunlight is reflected from snow and ice.) As the damage increases, the lens gradually becomes opaque. This is called a "cataract." A person with a cataract may have the lens surgically removed. It is then found that the eye has considerable sensitivity to uttraviolet light. Some people have even reported seeing X-rays.
ity to yellow-green light, but under scotopic conditions the eye has maximum sensitivity to the blue-green part of the spectrum (though of course it is not sensed as blue-green) and is completely blind to the red end of the spectrum. This is known as the Purkinje effect and can be observed in a garden at night, where red flowers may appear black and blue flowers appear white or gray.

Rhodopsin molecules have been chemically extracted from rod cells. When exposed to light of various wavelengths, these molecules absorb some wavelengths more readily than others. The "absorption spectrum," which shows the relative amount of each wavelength absorbed, is nearly identical to the eye's scotopic sensitivity curve. Thus it is the rhodopsin molecule that is responsible for the eye's spectral sensitivity under scotopic conditions.

After absorbing light in the retina, rhodopsin is regenerated in a complex chemical process involving vitamin A and requiring about 5 minutes for half of a large sample of molecules to be regener-
ated. After about 30 minutes the regers. ation is nearly complete. Apparently te time required for the eye's adaptations the dark, after exposure to bright ligtes related to this regeneration time, adi severe deficiency in vitamin A will pt vent it and result in night blindness.

It is much more difficult to extract photosensitive molecules from cone al than it is to extract the photosensio rhodopsin molecule from rod cells. Hs ever, beginning in the 1960s delicate e periments were performed, using a tax nique in which a narrow light bean s directed onto individual cone cells in me nal segments taken from either hurs monkey, or goldfish retinas. The if quency of the light was varied, and ti fraction of light absorbed was mease as a function of frequency. In all these periments three distinct kinds of of were identified, each with its own absp tion spectrum. Approximate absorpsi curves for human cones are showninf 25-D. Each of these curves coversabs spectral range, with maximum absorpu at $450 \mathrm{~nm}, 540 \mathrm{~nm}$,

Fig. 25-C Spectral sensitivity of the eye for photopic (light-adapted) and scotopic (ish) adapted) vision.

Closer Look

580 nm . These maxima correspond to bue, green, and yellow light respectively.
This spectrometry work verifies a theory proposed by Thomas Young in 1802. Young believed that human perception of solor comes from three distinct color receptors in the human eye, sensitive respectively to blue, green, and red light,* ind that all color sensations were combinations of excitations of these receptors. Mexwell and Helmholtz further developed this "trichromatic" theory, which is very successful in accounting for colormixing phenomena. Any spectral color an be matched when the right combinaton of blue, green, and red light-the "primary colors"-are mixed (Fig. 25-E). for example, you see yellow when your red and green cones are equally stimukted and your blue cones are not stimuhted. You can accomplish this either by

Wlitough the third pigment peaks in the yelbw, rather than red, it does extend far enough the the red to account for detection of this tolor.
looking at monochromatic yellow light or by looking at a combination of green light and red light. In either case, the perception is yellow.

You should not confuse the primary colors of light with the primary paint colors used by an artist who mixes paints. The primary paint colors are yellow, cyan (a brilliant shade of blue), and magenta (a purplish red). Paint pigments create color by absorbing or subtracting out other colors in the light that illuminates them. For example, when blue paint is illuminated by white light, the pigment absorbs the red end of the spectrum and reflects the blue end. Yellow paint illuminated by white light absorbs the blue part of the light and reflects red and green light equally. If you mix yellow and blue paints, you get green paint, since the yellow pigment absorbs the blue light and the blue pigment absorbs the red light. On the other hand, if you mix yellow light and blue light, you get white light!

Fig. 25-E Colors produced by the addition of the primary colors of red, blue, and green.

Fig. 25-D Absorption of light by the three types of cones in the retina of the human eye.

Closer Look

Color blindness occurs when one or more of the cones are missing, or, more commonly, when the absorption spectra of the red and green cones are somewhat different from those shown in Fig. 25-D. "Red-green" color blindness is about 10 times more common in men than in women, occurring in about 6% of all males. Other kinds of color blindness are more rare. Only about one person in 30,000 is completely blind to colors. Those who are red-green color blind can distinguish bright primary colors but have difficulty with certain shades of color.

Although the idea of three distinct kinds of color receptors now seems to be well established, it seems certain that color perception does not consist merely of receptor cells sending one of three messages (blue, green, or red) along the optic nerve directly to the brain. There is an abundance of color phenomena that is impossible to explain in this way. For example, Land has performed a series of experiments that dramatically illustrate how the human eye is able to maintain a constant determination of the color of an object, independent of the frequency of the
illuminating light and also therefore ind pendent of the frequency of the light n flected by the object. Apparently the is able to compare the light refected from various objects in the visual fetd and to somehow determine from these data the "true" color of each object. TI is just one indication of the processing visual information that takes place bo within the retina in the network of rece tors, bipolar cells, and nerve fibers andi the visual cortex of the brain.

1. Look at the picture of cones and rods. Do cones look like you expected? Why? Have you seen an image of cones and rods before? If so where?
2. Is the sensitivity range of our eyes as phenomenal as the range for our ears? What are you basing this answer on?
3. What is scotopic vision?
4. What is photopic vision?
5. Sit in a dark room (no more light than moonlight) for $5+$ minutes and then make some observations. Are you able to see detail of objects around you, can you identify colors, are you comfortable functioning at this level of light? Do your observations match the article, why or why not?
6. Now try reading normal size text. Are you able to do this after sitting in the room for $5+$ minutes?
7. Why do questions 4 and 5 ask you to sit for $5+$ minutes before making your final observations? Be very specific in your answer.
8. Does the sensitivity of our three types of cones appear to be equally spaced across the visible spectrum? Explain? Does this fit with the description in lab about the fovea not containing blue cones? Why?

9. Consider primary colors of light and primary paint colors. The colors on the right are demonstrating subtractive color combinations which are used in art. For example, red and green make black. However, when considering how light combines, additive combinations, you can see that red and green make yellow!

Use page three to fill in the following table to see how this works:

Color / substance	Absorbs	Reflects
Blue paint		
Yellow paint		
Yellow and Blue paint mixed		
Yellow and Blue light		

[^0]: *Only about 5 of these 100 photons are actually absorbed by receptors in the retina. Absorption of a single photon by a photosensitive molecule is enough to produce an electrical response in the receptor cell, but the circuitry of the bipolar layer needs about five photons to produce a nerve impulse. This mechanism apparently prevents the retina from responding to the few thermal photons that are present.

