Nuclear Physics

Nuclear composition Radioactivity Binding energy Nuclear reactions Fission and Fusion

Model of an atom

Model of an atom

- Earth is the Atom 10⁻¹⁰m
- Ross Hall would be nucleus 10⁻¹⁵m
- Orange would be electrons 10⁻¹⁸m
- Density is tremendous!
- $2 \times 10^{17} \text{ kg/m}^3 \text{ vs.}$ Water $1 \times 10^3 \text{ kg/m}^3$

Nuclear Force

- Gravitational Force
- Electrostatic Force
- Magnetic Force
- Nuclear Force
 - Short range force that attracts protons and neutrons to each other. Overcomes electrostatic repulsion of protons.

FIGURE 30.3 Stable and unstable nuclei shown on a plot of neutron number N versus proton number Z.

Nuclear Reactions

Division or combination of protons/neutrons

<u>Radioactivity</u>

Spontaneous emission of radiation (electron transitions)

– alpha particles (α)

⁴He nuclei: 2 protons and 2 neutrons *Can't penetrate paper*

- Beta rays (β)
 - e⁻ or e⁺ (plus a nuetrino)
- Gama rays (γ)

photon (range of x-rays)

3 mm of Aluminum

5 cm of Lead

Nuclear Decay

- Unstable nuclei decay into more stable forms
- <u>Half Life</u> Time for half of the sample to decay

Example:

- If $T_{1/2} = 1000$ years
- N_o = 500 nuclei
- $t = 1000 \text{ years} \rightarrow N = 250 (1/2 N_{o})$
- $t = 2000 \text{ years} \rightarrow N = 125 (1/4 N_{o})$
- $t = 3000 \text{ years} \rightarrow N = 62.5 (1/8 N_o)$

FIGURE 30.18 Half the nuclei decay during each half-life.

Radon

- T_{1/2} = 3.83 days
- Radiation in the form of alpha (α) particles
- Can only damage body if internal.
- Appears to damage lungs of smokers
- If ingest it, body expels it in 100 minutes

Binding energy

 Energy required to totally disassemble a nucleus into protons and neutrons

$E = mc^2$

• A bound nucleus weighs less than it's constituent protons and neutrons.

• A reaction in which two nuclei are combined, or fused to form a larger nucleus

Fission

 A reaction in which two nuclei are split (fissured)

- Overcome coulomb repulsion of electrons
- Net gain of energy due to binding energy (like falling in a hole with a big wall around it)
- Sun not hot enough very small probability some will get past (tunneling)
- Sun's reactions highly unlikely so life is 10 billion years

Sun: ¹H -> He Reactors: ²H deuterium -> He

- Reactor requires:
 - Very high temperature 10⁸ K
 - High density of material
 - time

- <u>Ignition</u> Reactions produce enough energy to be self-sustaining (external energy source cut off)
- <u>Break even</u> fusion power equals heating input
 - Been reached for a very short amount of time
 - NIF has a 192 Laser array used to ignite Hydrogen.
 - The Laser uses 1000 times more power than the US/sec.

• Heavy nuclei have less Binding Energy than midrange ones.

• Heavy nuclei have less Binding Energy than midrange ones.

- <u>Chain reaction</u> reactions produce excess neutrons some make more fissions
- <u>Critical mass</u> Minimum amount of material needed for self sustained chain reaction
- ²³⁵U and ²³⁸U occur together in nature so they have to be separated – very expensive!

- <u>Criticality</u> self-sustaining chain reaction
- <u>Super-criticality</u> exponential increase in reactions
- <u>Control rods</u> prevent super-criticality and control heading to avoid meltdown or explosion

Nuclear Weapons

Nuclear Weapons

- Fission Bombs
- 1945 10 kT 20kT (equivalent of 5000 conventional bombs)
- Hiroshima 15kT & Nagasaki was 20kT

Nuclear Weapons

- Fusion Bombs (H-bomb)
- 1952 10 MT (670 x Hiroshima)
- Soviets have detonated a 67MT device.

Adjust output

