1. A uniform electric field of magnitude $250 \mathrm{~V} / \mathrm{m}$ is directed in the positive x direction. $\mathrm{A}+12 \mu \mathrm{C}$ charge moves from the origin to the point $(x, y)=(20 \mathrm{~cm}, 50 \mathrm{~cm})$. (a) what was the change in the potential energy of this charge? (b) Through what potential difference did the charge move?
a. $-6.0 \times 10^{-4} \mathrm{~J}$, b. -50 V
2. The plates of a parallel-plate capacitor are separated by 0.100 mm . If the material between the plates is air, what plate area is required to provide a capacitance of 2.00 pF ? $2.26 \times 10^{-5} \mathrm{~m}^{2}$
3. Consider the parallel-plate capacitor formed by the Earth and a cloud layer is described in Problem 25. Assume this capacitor will discharge (i.e., lightning occurs) when the electric field strength between the plates reaches $3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}$. What is the energy released if the capacitor discharges completely during a lightning strike?
$3.17 \times 10^{10} \mathrm{~J}$
