Need a mirror ½ your height to see from head to toe.

Move back, same amount of mirror

Left-right Image Reversal

Image raises right hand

Mirror

View of image raising its right hand.

Object raises
left hand

Quick Quiz

23.1 In the overhead view of Figure 23.3, the image of the stone seen by observer 1 is at C. Where does observer 2 see the image: at A, at B, at C, at D, at E, or not at all?

Quick Quiz

23.1 In the overhead view of Figure 23.3, the image of the stone seen by observer 1 s at C. Where does observer 2 see the image: at A, at B, at C, at D, at E, or not at all?

All observers would perceive light to be diverging from the same point - the image point.

Wave, particle or...

- Wave vs. particle on microscopic scale
- Visible 0.5×10⁻⁶
- Ultraviolet 10⁻⁸

- 10 ⁻⁷ meters
- Very specialized study to see either

t Protozoans Molecules

- Ray Approximation or Geometric Optics
 - Meters
 - Every day experiences

Concave Mirror

Converging mirror: light reflects from the *inner* surface of a spherical mirror

C47-381402 [RM] © www.visualphotos.com

Convex Mirror

Diverging mirror: light reflects from the *outer* surface of a spherical mirror

Concave converging

ConvexDiverging

Concave converging

ConvexDiverging

F is Focal Point