Physics 221 Group Project Force, Electric Field, Potential Energy and Potential

Names: _____

- 1. A charge of -5.2 nC is at -3.00 m on the *x*-axis. A second charge of 2.60 nC is placed at 3.00 m on the *x*-axis. A 1.0 nC charge is placed at the origin.
 - a. Find the force on the charge at the origin.
 - b. Find the electric field on the charge at the origin.
 - c. Find the electric potential at the origin if the 1.0 nC charge is not present.
 - d. Find the electric potential energy of the charge at the origin.
- 2. In the movie *Back to the Future*, Doc tells Marty that, to power his automotive time machine, he needs at least 1.2 gigawatts $(1.2 \times 10^9 \text{ W})$ and that he can obtain this from a stroke of lightning. Suppose that a certain lightning stroke lasts 0.20 s and transfers 20 C of charge across a potential difference of $5.0 \times 10^7 \text{ V}$.
 - a. How much energy is delivered, and what is the power of the stroke?
 - b. If the time machine uses energy at the rate of 1.2 gigawatts, how long will the energy obtained from the lightning last?
 - c. The time machine uses a so-called "flux" capacitor. Assuming that it has characteristics similar to an ordinary capacitor, with a dielectric constant of 100 and a dielectric strength of 1.0×10^8 V/m, find the minimum volume it can have to store the energy from the lightning stroke. Energy density of a capacitor is $PE/m^3 = \frac{1}{2} \kappa \epsilon_0 E^2$
 - d. A typical automobile battery stores about 10⁶ J in a volume of 10⁻² m³. How large would an automobile battery have to be to store the energy from the lightning?