Exam 1 Equations

$f=f \frac{v \pm v_{o}}{v \pm v_{s}}$, + observer moving towards, - observer moving away, - source moving towards, + source moving away. $v=331 \mathrm{~m} / \mathrm{s} \sqrt{1+\frac{T}{273}} \quad I=\frac{P}{4 \pi r^{2}} \quad \beta=10 \log \left(\frac{I}{I_{o}}\right) \quad I_{0}=1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$

$$
F=-k x \quad a=-\frac{k}{m} x \quad v=\lambda f \quad T=1 / f
$$

Period of a Spring: $T=2 \pi \sqrt{\frac{m}{k}}$ Period of a pendulum: $T=2 \pi \sqrt{\frac{L}{g}} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$P E_{s}=1 / 2 k x^{2} \quad P E_{g}=m g h \quad \quad K E=1 / 2 m v^{2} \quad v= \pm \sqrt{\frac{k}{m}\left(A^{2}-x^{2}\right)}$

Equations of motion general: $x=A \cos (2 \pi f t)$
Equations of motion springs: $x=A \cos \left(\sqrt{\frac{k}{m}} t\right)$

$$
\begin{array}{ll}
v=-2 \pi f A \sin (2 \pi f t) & a=-(2 \pi f)^{2} A \cos (2 \pi f t) \\
v=-\sqrt{\frac{k}{m}} A \sin \left(\sqrt{\frac{k}{m}} t\right) & a=-\frac{k}{m} A \cos \left(\sqrt{\frac{k}{m}} t\right)
\end{array}
$$

