Elasticity

10/29/12

Springs and Masses

Resonance sim

Hooke's Law

$$F = -kx$$

Springs and Masses

What is the spring constant of Spring 3?

What is the mass of the red weight?

Deformation

- Stress and Strain
- Faults
- Folds

Compression

- Forces opposite
- Act towards each other

Tension

- Forces opposite
- Act away from each other

Shear

- Forces opposite
- Act parallel
- But across a plane

- Strain (Deformation)
 - Change in shape or size $(\Delta L/L)$
 - Response to stress (Force/Area F/A)

$$F/A = Y \Delta L/L$$

Y = Young's Modulus

Characterizes how the material strains in response to stress

Strain can be measured by how much the shape changed.

Elasticity of Rock

Strain can be measured by how much the shape changed.

- 1) Elastic deformation
 - Temporary change in shape or size
 - Recovers when stress is removed

$$F = -kx$$

- 2) Ductile (plastic) deformation
 - Permanent change in shape or size
 - Not recovered when the stress is re
 - (Folding)

Playdough, clay

Stretched beyond the *elastic limit* Permanently deformed

- 3) Brittle deformation (rupture)
 - (Faulting)

- Past *Tensile* Strength

Past *Tensile Strength*

- Factors that affect deformation
 - Temperature (Young's modulus)
 - Pressure (Stress)
 - Strain rate (not considered in this chapter)
 - Rock Type (Young's Modulus)

Tectonic Forces and Resulting Deformation

