Quiz 9

Name: \qquad Group: \qquad

1. Two vehicles collide head on. Initially the first vehicle is traveling at $10.0 \mathrm{~m} / \mathrm{s}$ due North and the second vehicle, which is twice the mass of the first, is traveling due South at $20.0 \mathrm{~m} / \mathrm{s}$. After the collision, the bumpers are locked.
a. What is the final velocity of the two vehicles?
b. What is the impulse delivered to each vehicle?
2. Explain why, using conservation of angular momentum, a skater spins faster when they bring their arms tighter into their body.

$$
\begin{array}{lll}
\overrightarrow{\boldsymbol{p}}=m \overrightarrow{\boldsymbol{v}} & \overrightarrow{\boldsymbol{F}} \Delta t=\Delta \overrightarrow{\boldsymbol{p}} & \overrightarrow{\boldsymbol{p}}_{i}=\overrightarrow{\boldsymbol{p}_{\boldsymbol{f}}} \\
g=9.8 m / s^{2} & \Sigma \overrightarrow{\boldsymbol{F}}=m \overrightarrow{\boldsymbol{a}} \\
v_{x}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}}{\Delta \mathrm{t}} & & \\
x_{f}=x_{i}+v_{x i} \Delta t+1 / 2 a_{x}(\Delta t)^{2} & a_{x}=\frac{\Delta \mathrm{v}_{\mathrm{x}}}{\Delta \mathrm{t}}=\frac{\mathrm{v}_{\mathrm{xf}}-\mathrm{v}_{\mathrm{xi}}}{\Delta \mathrm{t}} & \\
\sin \theta=\mathrm{opp} / \mathrm{hyp} & v_{x f}=v_{x i}+a_{x} \Delta t & v_{x f}^{2}=v_{x i}^{2}+2 a_{x}(\Delta x) \\
\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2} & \cos \theta=\operatorname{adj} / \mathrm{hyp} & \tan \theta=\mathrm{opp} / \mathrm{adj}
\end{array}
$$

