Quiz 7/8

Names: \qquad

1. When you rise from a chair, you have to lean quite far forward (try it!). Why is this?
2. By experiment you've determined the spring constant for the springs on each wheel of a car. You use Hooke's Law, $F=-k x$, to model these springs. Which factor of Hooke's Law F, k or x would the following physical features fit - or would it not fit the model provided by Hooke?
a. Load of groceries in the car.
b. Thickness of metal used to make the springs.
c. Car sinking down when a very large man (400 lbs) enters the car.
d. Pressure in the tires of the car.
3. Two bears are hanging out on a tree branch as shown. Let's guess that each bear's mass is 40 kg and the tree branch is 50 kg and is 5 meters long. Assume one bear is about 1 meter from the trunk and the other is 2.5 meters from the trunk.
a. Determine the net torque on the branch where it meets the trunk of the tree. Model the branch as if it's growing perfectly horizontal to the
 ground.
b. Now determine the torque at the trunk if these two bears moved to identical locations on a branch that was leaning down at an angle of 40°.
c. How does the torque on the horizontal and
 the leaning branch compare?

$$
\begin{array}{lll}
\theta_{f}=\theta_{i}+\omega_{i} \Delta t+1 / 2 \alpha(\Delta t)^{2} & \omega_{f}=\omega_{i}+\alpha \Delta t & \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha(\Delta \theta) \\
\tau=F_{\perp} r & v=\omega r & a_{c}=\frac{v^{2}}{r}=\omega^{2} r \\
\mathrm{x}_{\mathrm{cg}}=\frac{x_{1} m_{1}+x_{2} m_{2}+x_{3} m_{3}+\ldots .}{m_{1}+m_{2}+m_{3}+\cdots} & F_{s p}=-k \Delta x & \frac{F}{A}=Y \frac{\Delta L}{L}
\end{array}
$$

