Quiz 3

Physics 220
Fall 2012
Name: \qquad

1. Two metal balls are the same size but one weighs twice as much as the other. These balls are rolled off a horizontal table with the same speed. In this situation:
a) both balls hit the floor at approximately the same horizontal distance from the base of the table.
b) the heavier ball hits the floor at about half the horizontal distance from the base of the table than does the lighter ball.
c) the lighter ball hits the floor at about half the horizontal distance from the base of the table than does the heavier ball.
d) the heavier ball hits the floor considerably closer to the base of the table than the lighter ball, but not necessarily at half the horizontal distance.
e) the lighter ball hits the floor considerably closer to the base of the table than the heavier ball, but not necessarily at half the horizontal distance.

Explain Why:
2. A bowling ball accidentally falls out of the cargo bay of an airliner as it flies along in a horizontal direction.
Which path would the bowling ball most closely follow after leaving the airplane?

3. A projectile is launched with an initial speed of $40.0 \mathrm{~m} / \mathrm{s}$ at an angle of 30° above the horizontal. The landscape is rolling hills and the projectile lands 6.00 seconds later. Neglect air friction and use $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration due to Earth's gravity.
a. What is its velocity just before it hits the ground?
$x_{f}=x_{i}+v_{x i} \Delta t+1 / 2 a_{x}(\Delta t)^{2} \quad v_{x f}=v_{x i}+a_{x} \Delta t \quad v_{x f}^{2}=v_{x i}^{2}+2 a_{x}(\Delta x)$
$\sin \theta=$ opp/hyp $\quad \cos \theta=a d j / h y p \quad \tan \theta=$ opp/adj $\quad a^{2}+b^{2}=c^{2}$
b. How far above or below the launch point must the landing site be?
4. A bus is moving at $10.0 \mathrm{~m} / \mathrm{s}$ relative to the Earth. A passenger sitting in the front row throws a ball to his friend in the back row. If the ball is thrown with a horizontal velocity of -4.0 meters per second relative to the Earth, what is its velocity relative to the passengers in the bus?

$$
x_{f}=x_{i}+v_{x i} \Delta t+1 / 2 a_{x}(\Delta t)^{2} \quad v_{x f}=v_{x i}+a_{x} \Delta t \quad v_{x f}^{2}=v_{x i}^{2}+2 a_{x}(\Delta x)
$$

$$
\sin \theta=\text { opp/hyp } \quad \cos \theta=a d j / \text { hyp } \quad \tan \theta=\text { opp/adj } \quad a^{2}+b^{2}=c^{2}
$$

