Exam 2 Physics 220 Spring 2014

Name:	Solition	Group:	
		oroup.	

1. Which of the following best depicts the path of the moon around the sun?

0

b.

d.

- e. The moon does not orbit the sun.
- 2. A person is moving their couch in their living room. In one case, they pull perfectly horizontally. In the other they push at an angle as shown in the 2nd diagram. In which case is it easier to move the sofa? When

c. Both are equally as difficult

- a. The amount of force with which the man pushes on the car is greater than the force with which the car pushes back on the man.
- b. The amount of force with which the man pushes on the car is equal to the force with which the car pushes back on the man.
- c. The amount of force with which the man pushes on the car is less than the force with which the car pushes back on the man.
- d. The car does not apply a force on the man.
- 4. The answer to the above question
 - a. depends on whether the man is speeding up, slowing down or moving at a constant speed.
 - b. is always equal and opposite because these are force pairs.
 - c. depends on the net force acting on the car
 - d. Both a and b
 - e. Both a and c

- a. The upward force by the rope is greater than the downward force of gravity
- b. The upward force by the rope is equal to the downward force of gravity
- c. The upward force by the rope is less than the downward force of gravity

- 6. Consider a basketball player jumping up off the gym floor.
 - (a.) While jumping the normal force is greater than the players' weight
 - b. While jumping the normal force is equal to the players' weight
 - c. While jumping the normal force is less than the players' weight

7. A semi's brakes fail as it heads down I-70. Luckily there's a runaway truck ramp near. The semi goes up the ramp and the deep gravel quickly brings the truck to a stop.

Which free body diagram fits this description?

A.

B.

D.

8. The force pair for the semi's normal force is

- a. The weight of the semi we gut
- b. The gravel on the truck's wheels (pushing against motion)
- c. The ground on the semi normal
- d.) The semi on the ground
- The truck's wheels on the gravel (pushing gravel forward)
- 9. Two boxes are being pushed on a frictionless surface, one in front of the other, as shown in the diagram. Box A has a mass of 70 kg and Box B a mass of 30 kg. The push on Box A is a horizontal force of 200 N. What is the force on Box B?
 - a. 200 N
 - b. 100N

 - c. 80 N
 - (d.) 60 N
- FB = 30kg 2m/52
 - = 600

1 wkg

10. What is the acceleration of mass 1 if there is no friction on Mass 1?

- a. More than 9.8 m/s²
- b. 9.8 m/s²
- c.) Less than 9.8 m/s² but greater than 0 m/s²
- d. 0 m/s^2

11. The moon's gravitational force on the earth is

- a. greater than the earth's gravitational force on the moon.
- b. equal to the earth's gravitational force on the moon.
 - c. less than the earth's gravitational force on the moon.

 $m_1 a - W_2 = m_2 a$ $m_1 a + m_2 a = W_2$ $a(m_1 + m_2) = W_2$ $a = W_2$

12. A ball on the end of a string swings in a horizontal circle once every second. The magnitude of the centripetal acceleration is

- a. Zero
- b.) Constant (but non-zero)
- c. Changing

Consider the bucket swing from lab. Choose the correct free-body diagram for the instant when the bucket is at the top of its swing.

The Singapore Flyer is currently the world's tallest Ferris wheel with a diameter of 150 meters. A passenger on the Ferris wheel finds that one rotation takes 190 seconds to go all the way around.

14. What is the angular velocity of this Ferris wheel?

- a. 0.005 rad/s
- b.) 0.033 rad/s
 - c. 0.75 rad/s
 - d. 2.5 rad/s
 - e. 190 rad/s

- 15. What is the period of the Singapore Flyer?
 - a. 0.005 s
 - b. 0.033 s
 - c. 0.75 s
 - d. 2.5 s
 - (e.) 190 s
- 16. Calculate Mercury's speed as it orbits around the sun.
 - a. 366 m/s
 - b. 2,950 m/s
 - c. 7,910 m/s
 - d. 29,700 m/s
 - e. 47,900 m/s

= 47,879M/s

- 17. Determine the acceleration due to gravity on Mercury.
 - a.) 3.59 m/s² b. 3.77 m/s²

 - c. 8.88 m/s²
 - d. $9.8 \, \text{m/s}^2$
 - e. 36.6 m/s²

mg = Gm.mz

- g= Gm = 6.67x15" mil 3,18x1023 Kg
 (2.43 x10" m) 2 = 3,5973
- 18. A person is standing on a scale in an elevator as it moves. At the instant shown, the elevator is moving down at 3 m/s and is speeding up at 2 m/s². What does the scale read in Newtons if the person has a mass of 80 kg?
 - a. 476 N
 - b. 546 N
 - (c.) 624 N
 - d. 784 N
 - e. 826 N
- $\int_{W}^{n} \int_{u}^{\infty} \int_{$ = 80 kg (9.8 mg 2- 2 mg 2

You must show all work for credit on Problems 19 - 21

- - 19. Two children fight over a 200 g stuffed bear. The 25 kg boy pulls to the right with a 14 N force and the 20 kg girl pulls to the left with an 18 N force. Ignore all other forces on the bear (such as its weight). What is the magnitude and direction of its acceleration?
 - 20. An 80kg person is on a Ferris wheel with a radius of 30 meters. The Ferris wheel is traveling at 0.35 radians per
 - 14 a. Draw a free body diagram when the person reaches the highest point in the ride.
 - b. Apply Newton's second law (sum of forces) at the highest point.
 - Determine the person's apparent weight as they reach the highest point.
 - 21. A 25,000 kg semi's brakes fail as it heads down I-70. Luckily there's a runaway truck ramp nearby with a 10% grade. The semi enters the ramp at 30 m/s and goes up the ramp and the deep gravel quickly brings the truck to a stop in 3.0 s.
 - Find the force of friction on the truck.
 - b. Find the coefficient of friction between the gravel and tires.

$$G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$$

$$F_G = \frac{Gm_1m_2}{r^2}$$

$$T^2 = \frac{4\pi^2}{GM} r^3$$

$$v = \frac{2\pi r}{T} = \sqrt{\frac{GM}{r}}$$

$$v = \omega r$$

$$a = \frac{v^2}{r} = \omega^2 r$$

$$f = \frac{1}{T}$$

$$w = mg$$

$$\Sigma \vec{F} = m\vec{a}$$

$$g = 9.8 \text{m/s}^2$$

$$v_x = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{\Delta t}$$

$$a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_{xf} - v_{xi}}{\Delta t}$$

$$x_f = x_i + v_{xi}\Delta t + \frac{1}{2} a_x(\Delta t)^2$$

$$v_{xf} = v_{xi} + a_x \Delta t$$

$$v_{xf}^2 = v_{xi}^2 + 2a_x \left(\Delta x\right)$$

$$\sin \theta = opp/hyp$$

$$\cos \theta = adj/hyp$$

$$\tan \theta = \text{opp/adj}$$
 $a^2 + b^2 = c^2$

$$a^2 + b^2 = c^2$$

Fret = 14N-18N = -4N 2 Fama -4N = 0.200kg a 4 a = -20M/sz Negative indicates that acceleration is to the left. 3 b. &F_3=n-w=-ma C. N= w-ma - mg-ma = mcg-a) = m(g-w2) = 8014 (9.2 "sz-(0.3512) 30m F 490N 7 2 Fy=n- W cos10° = 0 EFx = -F - WSM 10° = -ma 3 a. F = ma-wsm 10° 10° = -n = 25,000kg (10 m/s2 - 9,8 m/s : 5,1 10") = 207,000 ~ a = 0 m/s - 30 m/s 2 46. 7=15 M = 5 = 207,450N = 10,86] = 100/2