Exam 1 review problem

Name: \qquad

1. A car has an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ to the right and an acceleration of zero. Determine how far it will travel in 3.0 seconds. Determine the final velocity of the car.
a. Draw a diagram
b. Find the givens
c. Describe your approach
d. Solve
e. assess
2. A boy throws a ball straight up with an initial velocity of $14.7 \mathrm{~m} / \mathrm{s}$. Determine how long it's in the air before it comes back to its original height. What is the velocity at this point?
a. Draw a diagram
b. Find the givens
c. Describe your approach
d. Solve the problem
e. Assess
3. A daredevil wants to jump seven school busses parked in a row on her BMX bike. Using some prebuilt ramps she'll need to travel 75 m horizontally from the top of one ramp to the next in order to clear the busses. She's got a ramp on the other side she can land on. It's important that she land right at the start of her landing ramp or she'll seriously injure herself. The pre-built take-off ramp has an angle of 30 degrees to the horizontal.
a. Draw a diagram that represents the above description
b. Can you help her figure out the necessary take off speed? Hint: use your results and information from problems 1 and 2 above.
c. Write down your givens and check that the initial velocity you determined in part b will actually fit all the requirements given in the problem statement.
d. Is this initial speed (velocity) possible on a BMX bike?
e. Create a set up that you think will allow the daredevil to successfully make this jump using the equipment that she has plus additional materials that you'll design and build for her.

$$
\begin{array}{lcc}
x_{f}=x_{i}+v_{x i} \Delta t+1 / 2 a_{x}(\Delta t)^{2} & v_{x f}=v_{x i}+a_{x} \Delta t & v_{x f}^{2}=v_{x i}{ }^{2}+2 a_{x}(\Delta x) \\
\sin \theta=\text { opp } / \mathrm{hyp} & \cos \theta=\mathrm{adj} / \mathrm{hyp} \quad \tan \theta=\mathrm{opp} / \mathrm{adj} & \mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2} \\
1609 \text { meters }=1 \text { mile } & 3600 \text { seconds }=1 \text { hour }
\end{array}
$$

