Name: \qquad

1. In winter why does the temperature not rise more than a few degrees above freezing as long as there is snow cover?
2. Joe (70 kg) rides his 5.0 kg sled 30.0 meters down a steep snowy mountain that makes an angle of 25° with the horizontal. The coefficient of friction between the sled and the incline is 0.15 .
a. Use the concepts of work and energy to solve for the final velocity of the sled.
b. Now use Newton's Laws to solve for the final velocity (this should match your value from a).
c. How much snow is melted by the sled if the snow is at $0^{\circ} \mathrm{C}$?
3. A 1200 kg car traveling at $30 \mathrm{~m} / \mathrm{s}$ quickly brakes to a halt. The kinetic energy of the car is converted to thermal energy of the disk brakes. The brake disks (one per wheel) are iron disks with a mass of 4.0 kg . Estimate the temperature rise of each disk as the car stops.
4. A 5 kg block of ice is initially at $-65^{\circ} \mathrm{C}$ and then combined with 1 kg of steam at $110^{\circ} \mathrm{C}$. What is the final temperature of the system, what is the final mass of ice, water and steam?
$W=F \Delta x=\Delta E$
$K=1 / 2 m v^{2}$
$U_{g}=m g h$
$U_{s}=1 / 2 k x^{2}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$K_{r}=1 / 2 I \omega^{2}$
$P=W / \Delta t=F v$
$T_{C}=T-273.15^{\circ} \mathrm{C}$
$T_{F}=\left(9^{\circ} \mathrm{F} / 5^{\circ} \mathrm{C}\right) T_{C}+32^{\circ} \mathrm{F}$
$K_{\text {avg }}=3 / 2 k_{B} T$
$E_{t h}=3 / 2 N k_{B} T$
$v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}}$
$k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\Delta L=\alpha L_{i} \Delta T$
$\Delta V=\beta V_{i} \Delta T$
$Q=M c \Delta T$
$Q=+/-M L_{f}$

$$
Q=+/-M L_{v}
$$

$\overrightarrow{\boldsymbol{p}}=m \overrightarrow{\boldsymbol{v}}$
$\overrightarrow{\boldsymbol{F}} \Delta t=\Delta \overrightarrow{\boldsymbol{p}}$
$\overrightarrow{\boldsymbol{p}}_{i}=\overrightarrow{\boldsymbol{p}}_{\boldsymbol{f}}$
$\Sigma \overrightarrow{\boldsymbol{F}}=m \overrightarrow{\boldsymbol{a}}$
$v_{x}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\mathrm{X}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}}{\Delta \mathrm{t}}$
$a_{x}=\frac{\Delta \mathrm{v}_{\mathrm{x}}}{\Delta \mathrm{t}}=\frac{\mathrm{v}_{\mathrm{xf}}-\mathrm{V}_{\mathrm{xi}}}{\Delta \mathrm{t}}$
$x_{f}=x_{i}+v_{x i} \Delta t+1 / 2 a_{x}(\Delta t)^{2}$
$v_{x f}=v_{x i}+a_{x} \Delta t$
$v_{x f}^{2}=v_{x i}^{2}+2 a_{x}(\Delta x)$
$\sin \theta=o p p / h y p$
$\cos \theta=\mathrm{adj} /$ hyp
$\tan \theta=\mathrm{opp} / \mathrm{adj}$
$a^{2}+b^{2}=c^{2}$

TABLE $\mathbf{1 2 . 4}$ Specific heats of solids	
and liquids	$\boldsymbol{c}(\mathbf{J} / \mathbf{k g} \cdot \mathbf{K})$
Substance	
Solids	128
Lead	129
Gold	385
Copper	449
Iron	900
Aluminum	2090
Water ice	3400
Mammalian body	
Liquids	140
Mercury	2400
Ethyl alcohol	4190
Water	

tABLE 12.3 Coefficients of linear and volume thermal expansion at $20^{\circ} \mathrm{C}$

Substance	Linear $\boldsymbol{\alpha}\left(\mathbf{K}^{-1}\right)$	$\boldsymbol{V} \boldsymbol{V} \boldsymbol{\beta}\left(\mathbf{K}^{-1}\right)$
Aluminum	23×10^{-6}	69×10^{-6}
Glass	9×10^{-6}	27×10^{-6}
Iron or steel	12×10^{-6}	36×10^{-6}
Concrete	12×10^{-6}	36×10^{-6}
Ethyl alcohol		1100×10^{-6}
Water		210×10^{-6}
Air (and other gases)	3400×10^{-6}	

TABLE 12.5 Melting and boiling temperatures and heats of transformation at standard atmospheric pressure

Substance	$\boldsymbol{T}_{\mathbf{m}}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{L}_{\mathbf{f}}(\mathbf{J} / \mathbf{k g})$	$\boldsymbol{T}_{\mathbf{b}}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{L}_{\mathbf{v}}(\mathbf{J} / \mathbf{k g})$
Nitrogen $\left(\mathrm{N}_{2}\right)$	-210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Water	0	3.33×10^{5}	100	22.6×10^{5}
Lead	328	0.25×10^{5}	1750	8.58×10^{5}
o2010 foumen Eacomen ne				

1. The energy from the sun is in the far of radiation. It typically is transformed in to thermal reg wherit's absorbed by the grand ane ar. This thermal elegy car either go into increasing the tupeatere of the objects wa a phase charge.
Snow at $32^{\circ}+00^{\circ} \mathrm{C}$ is at the melting pout of eater so the leg from the sun has bo melt the snow blue it car rave the tempuatre of the sow. It takes a lot more elegy to convert ice to water pe K.logran thar it does to nerease the temperature So the snow has to melt before it car became a ne warm day.
2. Kinetic eregg, of the car is convected to thermal elegy of the brake discs. $K=$ En This thermal eng heats the dies. $Q=$ mont. Dintlorget the Kinetieregy is Minded between the 4 discs.

$$
1 / 21200 \mathrm{~kg}\left(30^{1 \%}\right)^{2}=540,000 \mathrm{~J} \text { so 135,000J per disc. }
$$

$$
\begin{aligned}
& K=E \pi+1 / 2 m v^{2}=E_{\pi I I} \\
& Q=\operatorname{mc} \Delta T \quad 135) 0005=4.0 \mathrm{~kg} 449 \frac{\mathrm{~J}}{\mathrm{~kg}} \Delta T
\end{aligned}
$$

$$
\begin{aligned}
& \overbrace{h-30 n}^{2 k-25^{\circ}-2} \\
& \text { a. } U_{g}+k_{i}=U_{g t}+K_{f}+E_{T H} \\
& h=30 \mathrm{~m} \sin 25^{\circ}{ }^{\wedge} y \\
& f=12.7 m \text { and } \\
& m g h:+0=0+1 / 2 m v_{f}^{2}+f_{\Delta x} \\
& \frac{\partial(m g h-f \Delta x)}{m}=v_{f}^{2} \\
& \frac{2\left(m g h-\mu m g \cos 25^{\circ} \Delta x\right)}{m}=v_{f}^{2} \\
& \sum F_{y}=n-\omega \cos 25^{\circ}=0 \\
& n=m g \cos 25^{\circ} \\
& f: \mu_{n}=\mu_{m} g \cos 25^{\circ} \\
& \begin{aligned}
\sqrt{2\left(9.8^{m} / 5 \cdot 12.7 m-0.159 .8^{m} / 2 \cos 25^{\circ} 30 \mathrm{~m}\right)} & =V_{f} \\
12.98^{\mathrm{m} / \mathrm{s}} & =V_{f}
\end{aligned} \\
& \begin{aligned}
2\left(9.8 \mathrm{~m}_{\mathrm{s}} \cdot 12.7 \mathrm{~m}-0.159 .8^{\left.\mathrm{m} / 22 \cos 25^{\circ} 30 \mathrm{~m}\right)}\right. & =V_{f} \\
12.98^{\mathrm{m} / \mathrm{s}} & =V_{f}
\end{aligned} \\
& 12.98 \mathrm{~m} / \mathrm{s}=V_{f}
\end{aligned}
$$

NOTE N $p a+b$ is not going to be on Exoutan 4 because
it fits Ch 485 . However it is appropriate for the final.

$$
\begin{aligned}
& m g \sin 25^{\circ}-\mu m g \cos 25^{\circ}=m_{a} \\
& 9.8^{m} / 5 \sin 25^{\circ}-0.159 .8_{j^{2}}^{m} \cos 25^{\circ}=a \\
& 2.809^{m} / 5^{2}=a
\end{aligned} ~ \begin{aligned}
V_{t}^{2} & =V_{1}^{2}+2 a 1 x \\
& =\sqrt{2 a 1 x} \\
& =\sqrt{2\left(2.809^{m} / s^{2}\right) 30 m} \\
V_{f} & =12.98^{\mathrm{m} / \mathrm{s}}
\end{aligned}
$$

$E_{T M}=F_{1 x}$

$$
Q=m c A T
$$

Enegj lost to heat
due to the conk
7/rection
b.
b.

$$
\sum F_{k}=w \sin 25^{\circ}-f=m a
$$

$$
\varepsilon F_{y}=n-w \cos 25^{\circ}=0
$$

4. Fist I will determine how much energy is lost when the steam cools from 110 to $100^{\circ} \mathrm{C}$. There'll find evergy lost when steam underses tolip-ill wore. Then Ill compare the to the heat gaved by the ne when it's temperature is inveased from $-\cos ^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ plus the heat gavid by melting the ne.
Sleanfon 110 b $100^{\circ} \mathrm{C} \quad m c \Delta T=1.0 \mathrm{~kg} 2010 \mathrm{~J} / \mathrm{gk}(100-110)=-20,100 \mathrm{~J}$ Stan to water (conduce) $-m_{L_{v}}=1.07 \mathrm{~g} 226 \times 10^{6} \mathrm{~J} / \mathrm{kg}=\frac{-2,260,000 \mathrm{~J}}{-\frac{\mathrm{J}}{2.280,100 \mathrm{~J}}}$
ice from -65 to $0^{\circ} \mathrm{C}$ ice to water (melt)

$$
\begin{aligned}
& \text { MEAT }=5.01 \mathrm{~g} 2090 \mathrm{~J} / \mathrm{gk}(0-65)=679,250 \mathrm{~J} \\
& M_{L F}=5.0 \mathrm{~kg} 333 \times 10^{5 \mathrm{~J} / \mathrm{kg}}=\frac{1,665,000 \mathrm{~J}}{2,344,250 \mathrm{~J}}
\end{aligned}
$$

When you aralyze the above values you car see that it takes more heat to warm the ice (-65to0) and melt the ice thar it does to cool the $5 \operatorname{tean}(110 t 0100)$ and condurse the steam.
So you need more heat ont of the steen to fin sh melting the -i.. The math above leaves the steanat lour and the re e at $0^{\circ} \mathrm{C}$ so thees 5 till aterpeake dffeerce Le ts check to see if the is cough energy available in the hot water that was stean to melt the re many ice.
conduced steam felon $100^{\circ} \mathrm{C}+00^{\circ} \mathrm{C} \quad \mathrm{mCAT}=100 \mathrm{~kg} 4156 \mathrm{~J} / \mathrm{gK} \quad(\mathrm{K}-100)=418,000 \mathrm{~J}$ We needed $2,344,200 \mathrm{~J}-2280,100=64,100 \mathrm{~J}$ and the hot water has $418,600 \mathrm{~J} 50$ it will easily melt all the ce. So we now knew TF, s between $0^{\circ} \mathrm{C} \$ 100^{\circ} \mathrm{C}$ and all of our ice a steam have been convertal to liquid mate.

$$
\text { Next page } \Rightarrow
$$

$Q_{\text {bst }}+Q_{\text {gain }}=0$

$$
\begin{aligned}
& \begin{array}{r}
-20,100 \mathrm{~J}+-2,260,0005+1.0 \mathrm{~kg} 4186\left(T_{F}-100^{\circ} \mathrm{C}\right)+679,250 \mathrm{~J}+1,665,000 \mathrm{~J}+5 \mathrm{~kg} 406 \mathrm{~T}_{\mathrm{F}} \mathrm{C} \\
=0
\end{array} \\
& -2,280,100 J+4186 T_{F}-418,600 J+2,344,250 J+20,930 T_{F}=0 \\
& -354,4505+25,116 T_{F}=0 \\
& T_{F}=\frac{354,450 \mathrm{~J}}{25,116 \mathrm{~J} / \mathrm{K}} \\
& T_{A}=14.1^{\circ} \mathrm{C}
\end{aligned}
$$

