Exam 4 - Review Problems

Name:

- 1. In winter why does the temperature not rise more than a few degrees above freezing as long as there is snow cover?
- Joe (70kg) rides his 5.0 kg sled 30.0 meters down a steep snowy mountain that makes an angle of 25° with the horizontal. The coefficient of friction between the sled and the incline is 0.15.
 - a. Use the concepts of work and energy to solve for the final velocity of the sled.
 - b. Now use Newton's Laws to solve for the final velocity (this should match your value from a).
 - c. How much snow is melted by the sled if the snow is at 0° C?
- 3. A 1200 kg car traveling at 30 m/s quickly brakes to a halt. The kinetic energy of the car is converted to thermal energy of the disk brakes. The brake disks (one per wheel) are iron disks with a mass of 4.0 kg. Estimate the temperature rise of each disk as the car stops.
- 4. A 5 kg block of ice is initially at -65 °C and then combined with 1 kg of steam at 110°C. What is the final temperature of the system, what is the final mass of ice, water and steam?

$W = F \Delta x = \Delta E$ g = 9.8 m/s ²	$K = \frac{1}{2} m v^{2}$ $K_{r} = \frac{1}{2} I \omega^{2}$	$U_g = mgh$ $P = W/\Delta t = Fv$	$U_s = \frac{1}{2} k x^2$
$T_C = T - 273.15^{\circ}C$ $K_{avg} = 3/2 \ k_B T$	$T_F = (9^{\circ}F/5^{\circ}C) T_C + 3L$ $E_{th} = 3/2 Nk_BT$	$2^{o}F$ $v_{rms} = \sqrt{\frac{3k_BT}{m}}$	k _B = 1.38 x 10 ⁻²³ J/K
$\Delta L = \alpha L_i \Delta T$	$\Delta V = \beta V_i \Delta T$		
$Q = Mc \Delta T$	$Q = +/- ML_f$	$Q = +/- ML_v$	

 $\overrightarrow{p}_i = \overrightarrow{p_f}$

 $a_x = \frac{\Delta v_x}{\Delta t} = \frac{v_{xf} - v_{xi}}{\Delta t}$ $v_{xf} = v_{xi} + a_x \Delta t$

 $\cos \theta = adj/hyp$

 $\overrightarrow{F} \Delta t = \Delta \overrightarrow{p}$

 $\vec{p} = m\vec{v}$

 $v_x = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{\Delta t}$ $x_f = x_i + v_{xi}\Delta t + \frac{1}{2} a_x (\Delta t)^2$ $\sin \theta = opp/hyp$ $a^2 + b^2 = c^2$

TABLE 12.4	Specific heats of solids
and liquids	

Substance	$c(J/kg \cdot K)$	
Solids		
Lead	128	
Gold	129	
Copper	385	
Iron	449	
Aluminum	900	
Water ice	2090	
Mammalian body	3400	
Liquids		
Mercury	140	
Ethyl alcohol	2400	
Water	4190	

TABLE 12.3	Coefficients of linear and		
volume thermal expansion at 20°C			

 $\Sigma \vec{F} = m \vec{a}$

 $v_{xf}^{2} = v_{xi}^{2} + 2a_x \left(\Delta x \right)$

 $\tan \theta = opp/adj$

Substance	Linear α (K ⁻¹)	Volume β (K ⁻¹)
Aluminum	23×10^{-6}	69×10^{-6}
Glass	9×10^{-6}	27×10^{-6}
Iron or steel	12×10^{-6}	36×10^{-6}
Concrete	12×10^{-6}	36×10^{-6}
Ethyl alcohol		1100×10^{-6}
Water		210×10^{-6}
Air (and other gases)		3400×10^{-6}

TABLE 12.5	Melting and boiling temperatures and heats of transformation at standard
atmospheric	pressure

Substance	$T_{\rm m}$ (°C)	$L_{\rm f}$ (J/kg)	$T_{\rm b}$ (°C)	$L_{\rm v}$ (J/kg)
Nitrogen (N ₂)	-210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Water	0	3.33×10^{5}	100	22.6×10^{5}
Lead	328	0.25×10^{5}	1750	8.58×10^{5}

© 2010 Pearson Education, Inc.

$$\frac{2}{10} \frac{1}{10} \frac$$

4. Fist I will determe how much every is lost when the steam wols from 110 to 100%. There II find energy last when steam landerses to lig-it wate. Then I'll compare thes to the heat gaved by the see when it's timerature is increased from -65°C to o'cplus the heat gaved by metting the see. mcst = 1.0kg 2010 / kgk (100-110) = 20,100 J - mLv = 1.0kg 226 x10 / kg = 2,260,000 J - 2.280,100 J Steam from 110 \$ 100°C Stean to water (concluse) $m_{LF} = 5.0kg 337 x los T/kg = 1.665,000 J$ lice from -65 to 0°C ice towater (melt) 2,344,250 5 when you analyze the above values you can see that it takes more heat to warm the ree (-65 to 0) and melt the ree than ; I does to cool the steam (110 to 100) and condense the steam. So you need more heat out of the stean to finish mething the i. . The math above leaves the steanat love and the ree at 0°Cs, three's still atempeature difference hets check to see if theis crough everyg available in the hot water that was stean to melt the remany rie. Condensed steam from 100°C to O'C MCAT = 1.0kg 4136 /4/2 (4-100) = 418,6005 We needed 2344,2505 - 2280,00 = 64,1505 and the bot water has 418,6005 50 it will easily melt all there. So we now know TF; 5 between O'C & 100°C and all of but ice & stean have been converted to liquid wate. Next page =>

$$\begin{aligned} \left(d_{vot} + d_{vout} = 0 \end{aligned}$$

$$\begin{aligned} d_{vot} + d_{vit} w_{vit} + d_{wutwo} + d_{vit} + d_{wout} + d_{vit} \end{aligned}$$

$$\begin{aligned} -20,1005 + -2,260,005 + 1005,005 + 2,340,2505 + 20,94305 + 20,94305 + 2,340,2505 + 20,94305 + 2,340,2505 + 20,94305 + 2,340,2505 + 2,340,2505 + 2,250,4025$$