Terminal velocity

Is it possible for an object to travel in air faster than its terminal speed?

D

w

A. Yes B. No

Chapter 6

2/26/14

Ball Toss

Taking the drag force into account, does it take longer for the ball to travel to the top of its motion or for it to fall back down again?

- A. Longer to top
- B. Longer back down
- C. Equal

Uniform circular motion

Why is it called "Uniform"?

- A. Velocity is constant
- B. Acceleration is
- constant
- C. Speed is constant D. None of these

Linear	Angular	What are the units of angular velocity?
Δx – displacement v – velocity	acement $\Delta \theta$ - angular displacement ω – angular velocity (omega) $\omega = \Delta \theta / \Delta t$	A. m/s
$v = \Delta x / \Delta t$		B. rad/s C. m/s ²
		D. rad/s ²
		$\omega = \Delta \theta / \Delta t$

Increasing $\boldsymbol{\theta}$ counterclockwise

Also just convention!

what does your shadow do morning to night?

Which way is this person facing?

- A. North
 - B. East
 - C. South
 - D. West

If they are in Colorado?

Where is the person's shadow in the morning

- A. In front of them
- B. To their right
- C. To their left
- D. Behind them

Where is the person's shadow in the afternoon.

- A. In front of them
- B. To their right
- C. To their left
- D. Behind them

Which way is this person facing?

- A. North
- B. East
- C. South
- D. West
- If they are in Melbourne, Australia?

Depends on hemisphere

Motion of the Sun simulation

Convention: positive angular velocity is counter clockwise.

 $360^{\circ} = 2\pi \text{ rad}$

Which particle has angular position $7\pi/2$?

 $360^\circ = 2\pi \text{ rad}$

Which particle has angular position $5\pi/2$?

Who has a higher linear velocity, *v*?

- A. Jacob
- B. Emma
- C. Same

Linear	Angular		
Δx – displacement v – velocity	$\Delta \theta$ - angular displacement ω – angular velocity (omega)		
$v = \Delta x / \Delta t$	$\omega = \Delta \theta / \Delta t$		
$ \cdots v = \omega r \cdots$			

Linear	Angular	
Δx – displacement v – velocity	$\Delta \theta$ - angular displacement ω – angular velocity (omega)	
$v = \Delta x / \Delta t$	$\omega = \Delta \theta / \Delta t$	
F = ma	$a = v^2/r = \omega^2 r$ $F = ma = m v^2/r$	

In orbit, in the space shuttle, an astronaut is

- A. Weightless
- B. The same weight as on earth
- C. Less than on earth but not weightless
- D. More than on earth

Apparent Weight = normal force

- Weight is force of gravity **w = mg**
- Even if you're falling
- Astronauts are not weightless, they are apparently weightless

What is your true weight on the moon?

Say you have a mass of 60kg

Your weight on the moon is A. 60 kg 9.8 m/s² = 590 N B. 60 kg 1.6 m/s² = 98N C. 0 N

A car is rolling over the top of a hill at a constant speed. At this instant,

A car is rolling through the bottom of a valley at a constant speed. At this instant,

A. n > wB. n < wC. n = wD. we can't tell about nwithout knowing speed. Circular path of valley

a \vec{v}