Phys 220 Exam 3

Name: _____

- 1.a. What would happen to a satellite in orbit around the earth if the satellite's mass were to become twice its original mass?
 - A. Nothing
 - B. It would go faster but stay in the same orbit.
 - C. It would go slower but stay in the same orbit.
 - D. Its orbit would degrade and it would crash into the earth
- 1.b. Demonstrate mathematically your answer to #1.
- 2.a. If a person measures their blood pressure in the following two positions, the readings will be
 - A. Higher for A
 - B. Higher for B
 - C. The same at both positions.

2.b. What is the pressure difference between two points in a container of water 0.20 m from the surface of the water and 0.50 m from the surface? Clearly specify at which point the pressure is higher.

- 3. A student demonstrates that a bowling ball of mass 6 kg <u>sinks</u>. The student carefully measures the increase in water level when the ball is placed in the container and determines the volume of water that the ball displaced is 0.0053 m³.
 - a. What is the mass of the water that is displaced?
 - b. What weight in Newtons would a scale that is sitting on the bottom of the container measure for the submerged bowling ball?

- 4. A jet of gas shoots straight up from Jupiter's surface and reaches an altitude of 1.2 x 10⁶ m before falling back to the surface. At what speed did it erupt from the surface?
- 5. A 10.0 meter long, 500 kilogram steel beam is suspended <u>4.0 meters from one end</u> by a cable and raised up to the top of a sky scraper. <u>One 85 kg</u> man sits 2.0 meters from the cable on the short side, where would a second much larger man, 120kg, have to sit to balance the beam?

Jupiter's "useful data": Mass: 1.90 x 10²⁷kg mean radius: $6.99 \times 10^7 m$ Mean Distance from the sun: 7.78×10^{11} m. period around the sun: 3.74 x 10⁸s $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$ $PE_{G} = -Gm_{1}m_{2}/r$ $v = 2\pi r / T$ $F_{G} = Gm_{1}m_{2}/r^{2}$ 1 radian = 57.3° $T^2 / r^3 = 4\pi^2 / (GM) = K$ $v/r = \omega$ $KE = \frac{1}{2} m v^2$ PE = mgh $KE_R = \frac{1}{2} I \omega^2$ $L = I \omega$ $\tau = F r \sin \theta$ $x_{CM} = \sum x_i m_i / M$ $P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$ P = F/A $A_1 v_1 = A_2 v_2$ $\rho = m/V$ $\Sigma \vec{F} = m \vec{a}$ $q = 9.8 m/s^2$ w = mq $F_b = mg = \rho Vg$ density of air = 1.29 kg/m^3 $l \text{ atm} = 1.013 \text{ x} 10^5 \text{ Pa}$ density of water = 1000 kg/m^3