Physics 220-Exam \#I

Fall 2011

Name: \qquad

1. Scientific theories can always be proven correct through a reasonable amount of experimentation, if they are indeed correct.
a. True
b. False
2. If an object has a positive velocity and a negative acceleration, it means the object will
a. slow down.
b. speed up.
c. slow down, turn around and speed up in the other direction
d. remain at a constant speed
3. When a ball is thrown up into the air, what is its acceleration at the top of its flight?
a. $\quad a=0 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad a=9.8 \mathrm{~m} / \mathrm{s}^{2}$
d. not enough information is given.
4. What does the slope of this graph represent?
a. Position
b. Velocity
c. Acceleration
5. Use dimensional analysis to verify that the equation $a=\Delta x / \Delta t$ could be correct.
6. Sketch the corresponding velocity vs. time and acceleration vs. time graphs for the graph in \#4.
7. A train travels at a constant speed of $100 \mathrm{~m} / \mathrm{s}$ for 3 days and then returns to its original destination at $70 \mathrm{~m} / \mathrm{s}$.
a. How long does the return trip take?
b. What is the train's average velocity for the entire trip out and back?
8. If a cannon is fired on a flat plane at an angle of 20° above the horizontal with an initial velocity of 25 m / s,
a. how long is it in the air? and
b. what is its range?

1 mile $=1609$ meters
1 hour $=3600$ seconds
$v=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}}{\Delta \mathrm{t}} \quad a=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}}{\Delta \mathrm{t}}$
$\sin \theta=\mathrm{opp} /$ hyp $\cos \theta=\mathrm{adj} /$ hyp $\tan \theta=\mathrm{opp} / \mathrm{adj}$ 1 day $=24$ hours
$x=x_{o}+v_{o} t+1 / 2 a t^{2}$

1 kilometer $=0.621$ miles 100 centimeters $=1$ meter
$v=v_{o}+a t$
$v^{2}=v_{o}{ }^{2}+2 a\left(x-x_{0}\right)$
$\overrightarrow{\boldsymbol{g}}=-9.8 m / s^{2} \quad \mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$

